【理数個別の過去問解説】2012年度京都大学 数学 第3問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2012年度京都大学 数学 第3問解説

問題文全文(内容文):
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:14 問題解説
5:48 今回のポイント
5:58 名言

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
投稿日:2020.08.27

<関連動画>

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2n}+x^n+1$が$x^4+x^2+1$で割り切れる.
自然数$n$はどのような数か.
この動画を見る 

数学「大学入試良問集」【10−3 極線と軌跡】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
原点$O$を中心とし、半径1の円を$C$とする。
次の各問いに答えよ。
(1)
直線$y=2$上の点$P(t,2)$から円$C$に2本の接線を引き、その接点を$M,N$とする。
直線$OP$と弦$MN$の交点を$Q$とする。
点$Q$の座標を$t$を用いて表せ。ただし、$t$は実数とする。

(2)
点$P$が直線$y=2$上を動くとき、点$Q$の軌跡を求めよ。
この動画を見る 

練習問題18 どっかの教採の問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$f(\theta)=\sin2\theta+\sin\theta-\cos\theta+k\ (0\leqq \theta\leqq \pi)$
$f(\theta)=0$が異なる3つの解をもつような$k$の範囲を求めよ.
この動画を見る 

なぜ定積分で面積が求められるのか? #Shorts #毎日積分 #高校数学

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
なぜ定積分で面積が求められるのか?解説していきます.
この動画を見る 

超簡単な方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$ 0\leqq x\leqq 2\pi$
$25^{\cos x}-6・5^{\cos x-\frac{1}{2}}+1=0$
この動画を見る 
PAGE TOP