【数Ⅱ】「少なくとも1つが1」「すべてが1」を等式で証明する。【主張を言い換える】 - 質問解決D.B.(データベース)

【数Ⅱ】「少なくとも1つが1」「すべてが1」を等式で証明する。【主張を言い換える】

問題文全文(内容文):
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
投稿日:2021.11.15

<関連動画>

数と証明 4STEP数Ⅱ 6,7,25 3次式の展開、因数分解、割り算【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):
6(a+b+c)³を展開せよ。

7 次の式を因数分解せよ。
(1) x³-3x²+6x-8 (2)8a³-36a²b+54ab²-27b³

25 次の式A,Bをxについての多項式とみて、AをBで割った商と余りを求めよ。
(1)A=2x³+7ax²+5a²x+6a³, B=x+3a
(2)A=x³-3ax²+4a³, B=x²-2ax-2a²
(3)A=x⁴+x²y²+y⁴, B=x²+xy+y²
(4)A=2x²+4xy-3y²-5x+2y-1, B=x+y+2
この動画を見る 

福田のわかった数学〜高校2年生第5回〜整式の割り算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 整式の割り算\\
整式P(x)をx+2で割ると3余り、\\
(x-1)^2で割ると-x+4余る。P(x)を\\
(x+2)(x-1)^2で割った時の余りは?
\end{eqnarray}
この動画を見る 

数と証明 4STEP数Ⅱ 30,31,32 分数式の計算【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
この動画を見る 

100年前の東大入試「1000の10乗根を小数第6位まで求めよ!」物理オリンピック金メダリスト林俊介解説

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt[10]{1000}を二項定理を用いて小数第六位まで求めよ.$
この動画を見る 

福田のわかった数学〜高校2年生011〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 不等式の証明\\
|x| \leqq 1,|y| \leqq 1のとき、不等式\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\\
0 \leqq x^2+y^2-2x^2y^2+2xy\sqrt{1-x^2}\sqrt{1-y^2} \leqq 1\\
が成り立つことを示せ。\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\end{eqnarray}
この動画を見る 
PAGE TOP