2021同志社大 4次方程式4つの虚数解 - 質問解決D.B.(データベース)

2021同志社大 4次方程式4つの虚数解

問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.

2021同志社過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$c$は実数であり,定数である.
$x^4+cx^3+cx^2+cx+1=0$の$4$つの解がすべて虚数となる.$c$の必要十分条件である.
$4$つの虚数解が複素平面上で正方形になる$c$の値を求めよ.

2021同志社過去問
投稿日:2021.02.22

<関連動画>

慶應(医)三次方程式の解とΣ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$

1993慶應(医)
この動画を見る 

久留米大(医)虚数係数の三次方程式

アイキャッチ画像
単元: #複素数と方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{3}+(3+bi)x^{2}+(3k+2i)x+1+ki$=0
kは実数であり、上の3次方程式は負の実数解を持つ
解を求めよ.

久留米大(医)過去問
この動画を見る 

日本医科大学 三次方程式の解が等比数列

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.

2018日本医科大過去問
この動画を見る 

順天堂(医)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$w=z+z^2+z^4$

(1)
 ①$w+\bar{ w }$
 ②$w・\bar{ w }$

(2)
 ①$\cos \displaystyle \frac{2}{7}\pi+\cos \displaystyle \frac{4}{7}\pi+\cos \displaystyle \frac{8}{7}\pi$
 ②$\sin \displaystyle \frac{2}{7}\pi+\sin \displaystyle \frac{4}{7}\pi+\sin \displaystyle \frac{8}{7}\pi$


出典:2019年順天堂大学医学部 過去問
この動画を見る 

10東京都教員採用試験(数学:1-(1) 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣$2x^2-3x+2=0$の2つの解をα、βとする。
$α+\frac{1}{β}$,$β+\frac{1}{α}$を解にもつ$x^2$の係数が1となる2次方程式を求めよ。
この動画を見る 
PAGE TOP