東京大2022理系 - 質問解決D.B.(データベース)

東京大2022理系

問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系
投稿日:2022.03.21

<関連動画>

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 

順天堂大(医)等比数列の和の収束

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束

{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ

出典:順天堂大学医学部 過去問
この動画を見る 

福田のおもしろ数学010〜10秒で解けるキミは天才〜階乗の和の1の位

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
この動画を見る 

広島県立大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,S_n=\displaystyle \sum_{k=1}^n a_k$
$a_1^3+a_2^3・・・・・・+a_n^3=2S_n^2$とする.

(1)$a_n^2+2a_n=4S_n$を示せ.
(2)$a_n$を$n$の式で表せ.

1996広島県立大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第2問〜データの分析、共分散と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} n人のクラス(ただしn \gt 1)で英語と理科のテストを実施する。ただしどちらの科目\\
にも同順位の者はいないとする。出席番号i(i=1,2,\ldots,n)の生徒について、\\
その英語の順位xと理科の順位yの組を(x_i,y_i)で表す。\\
\\
(1)変量xの平均値\bar{ x }と分散s_x^2をそれぞれ求めると\bar{ x }=\boxed{\ \ (あ)\ \ },s_x^2=\boxed{\ \ (い)\ \ } である。\\
\\
(2)変量x,yの共分散s_{xy}とする。クラスの人数nが奇数の2倍であるとき、s_{xy}≠0である\\
ことを示しなさい。\\
\\
(3)i=1,2,\ldots,nに対してd_i=x_i-y_iとおく。変量x,yの相関係数をrとするとき、rは\\
nとd_1,d_2,\ldots,d_nを用いてr=1-\frac{6}{\boxed{\ \ (う)\ \ }}\boxed{\ \ (え)\ \ } と表される。\\
\\
(4)x_iとy_iの間にy_i=\boxed{\ \ (お)\ \ }(i=1,2,\ldots,n)の関係があるときrは最大値\boxed{\ \ (か)\ \ }をとり\\
y_i=\boxed{\ \ (き)\ \ }(i=1,2,\ldots,n)の関係があるときrは最小値\boxed{\ \ (く)\ \ }をとる。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP