東京大2022理系 - 質問解決D.B.(データベース)

東京大2022理系

問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
数列{$a_n$}を次のように定める。
$a_1=1$ , $a_{n+1}={a_n}^2+1(n=1,2,3\cdots)$
(1)正の整数nが3の倍数のとき$a_n$は5の倍数となることを示せ。
(2)$a_n$が$a_k$の倍数となる必要十分条件をk,nを用いて示せ。(k,n:正の整数)
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系
投稿日:2022.03.21

<関連動画>

1+2=❓  AKB□❗️❗️

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
1+2=
(a) 1!
(b) 2!
(c) 3!
(d) 3!!
この動画を見る 

【高校数学】群数列を分かりやすく~どこよりも易しく丁寧に~ 3-13【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1|3,5,7|9,11,13,15,17|19…
第n群の最初の数と最後の数を求めよ
この動画を見る 

大学入試問題#923「帰納法で解いても良いのかな」

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_n \neq 0$
$a_n=3(\sqrt{ S_n }-\sqrt{ S_{n-1} }),2 \leq n$

1.$a_2$を求めよ。
2.$\sqrt{ S_n }$を求めよ。
3.$a_n$を求めよ。

出典:1999年 千葉大学
この動画を見る 

福田の数学〜神戸大学2023年理系第1問〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 関数$f(x)$を
$f(x)$=$\left\{\begin{array} \\
\frac{1}{2}x+\frac{1}{2} (x≦ 1)\\
2x-1 (x \gt 1)\\
\end{array}\right.$
で定める。aを実数とし、数列$\left\{a_n\right\}$を
$a_1$=a, $a_{n+1}$=$f(a_n)$ (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)すべての実数xについて$f(x)$≧x が成り立つことを示せ。
(2)a≦1のとき、すべての正の整数nについて$a_n$≦1が成り立つことを示せ。
(3)数列$\left\{a_n\right\}$の一般項をnとaを用いて表せ。

2023神戸大学理系過去問
この動画を見る 

数列・合同式 前橋工科大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$

(1)
$a_n$

(2)
$\displaystyle \sum_{k=1}^n a_k$

(3)
$a_n+n-2$は4つの倍数を示せ

出典:2000年前橋工科大学 過去問
この動画を見る 
PAGE TOP