福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積 - 質問解決D.B.(データベース)

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

問題文全文(内容文):
xy平面上の2直線$L_1,L_2$は直交し、交点のx座標は$\frac{3}{2}$である。
また、$L_1,L_2$は共に曲線$C:y=\frac{x^2}{4}$に接している。このとき、$L_1,L_2$およびCで
囲まれる図形の面積を求めよ。

2022京都大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の2直線$L_1,L_2$は直交し、交点のx座標は$\frac{3}{2}$である。
また、$L_1,L_2$は共に曲線$C:y=\frac{x^2}{4}$に接している。このとき、$L_1,L_2$およびCで
囲まれる図形の面積を求めよ。

2022京都大学文系過去問
投稿日:2022.03.24

<関連動画>

【数Ⅱ】【微分法と積分法】面積から直線を求める ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点を通る直線と、曲線y=x²-2xで囲まれた図形の面積が$\frac{32}{3}$である。この直線の方程式を求めよ。
この動画を見る 

数学「大学入試良問集」【11−3 円と放物線(面積)】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#熊本大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$A$を中心とする円$x^2+(y-a)^2=bb^2$が、放物線$y=x^2$と異なる2点$P,Q$で接している。
ただし、$a \gt \displaystyle \frac{1}{2}$とする。
次の各問いに答えよ。

(1)$a$と$b$の関係式を求めよ。
(2)$\triangle APQ$が正三角形のとき、円と放物線で囲まれた三日月形の面積を求めよ。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[1]aを実数とし、$f(x)=x^3-6ax+16$
(1)$y=f(x)$のグラフの概形は
$a=0$のとき、$\boxed{\ \ ア\ \ }$
$a \gt 0$のとき、$\boxed{\ \ イ\ \ }$
である.

$\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }$については、最も適当なものを、次の⓪~⑤のうちから
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。
(※選択肢は動画参照)

(2)$a \gt 0$とし、pを実数とする。座標平面上の曲線$y=f(x)$と直線$y=p$
が3個の共有点をもつようなpの値の範囲は$\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }$
である。
$p=\boxed{\ \ ウ\ \ }$のとき、曲線$y=f(x)$と直線$y=p$は2個の共有点をもつ。
それらのx座標を$q,r(q \lt r)$とする。曲線$y=f(x)$と直線$y=p$
が点(r,p)で接することに注意すると
$q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}$
と表せる。

$\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$2\sqrt2a^{\frac{3}{2}}+16$ ①$-2\sqrt2a^{\frac{3}{2}}+16$
②$4\sqrt2a^{\frac{3}{2}}+16$ ③$-4\sqrt2a^{\frac{3}{2}}+16$
④$8\sqrt2a^{\frac{3}{2}}+16$ ⑤$-8\sqrt2a^{\frac{3}{2}}+16$

(3)方程式$f(x)=0$の異なる実数解の個数をnとする。次の⓪~⑤のうち、
正しいものは$\boxed{\ \ ケ\ \ }$と$\boxed{\ \ コ\ \ }$である。

$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(解答の順序は問わない。)

$⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1$
$②n=2ならばa \lt 0 ③a \lt 0ならばn=2$
$④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3$

[2]$b \gt 0$とし、$g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2$とおく。
座標平面上の曲線$y=g(x)$を$C_1$, 曲線$y=h(x)$を$C_2$とする。

$C_1$と$C_2$は2点で交わる。これらの交点のx座標をそれぞれ$\alpha,\beta$
$(\alpha \lt \beta)$とすると、$\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }$である。
$\alpha \leqq x \leqq \beta$の範囲で$C_1$と$C_2$で囲まれた図形の面積をSとする。また、
$t \gt \beta$とし、$\beta \leqq x \leqq t$の範囲で$C_1$と$C_2$および直線$x=t$で囲まれた図形の
面積をTとする。
このとき
$S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx$
$T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx$
$S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx$
であるので
$S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)$
が得られる。
したがって、$S=T$となるのは$t=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ b$のときである。

$\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
$⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}$
$②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}$
$④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}$
$⑥2g(x) ⑦2h(x)$

2022共通テスト数学過去問
この動画を見る 

福田の数学〜絶対落としたくないこの一題!〜慶應義塾大学2023年経済学部第6問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数の定数とする。また、xの関数$f(x)=x^3-ax+b$は
$a=\displaystyle \int_{-1}^{ 1 } \{\dfrac{3}{2}b|x^2+x|-f(x) \} dx$を満たすとする。
(1)bを、aを用いて表せ。
(2)y=f(x)で定まる曲線Cとx軸で囲まれた図形の面積Sを求めよ。なお、必要があれば$\alpha \lt \beta$を満たす実数$\alpha,\beta$に対して成り立つ公式
$a=\displaystyle \int_{\alpha}^{ \beta } (x-\alpha)^2(x-\beta) dx=-\dfrac{1}{12}(\beta-\alpha)^4$
を用いてもよい。

2023慶應義塾大学商学部過去問
この動画を見る 

【理数個別の過去問解説】2016年度京都大学 数学 文系第1問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
この動画を見る 
PAGE TOP