【数A】場合の数:出目の積! 大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。 - 質問解決D.B.(データベース)

【数A】場合の数:出目の積! 大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。

問題文全文(内容文):
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
チャプター:

0:00 オープニング
0:05 問題文
0:10 問題解説
2:17 今回のポイント:出目の積が○○の倍数では余事象
2:27 名言

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
投稿日:2020.12.16

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(3)〜部屋わけ・グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)3つの部屋A,B,Cがある。この3つの部屋に対して、複数の生徒が以下の\\
試行(*)を繰り返し行うことを考える。\\
(*)\left\{
\begin{array}{1}
・生徒それぞれが部屋を無作為に1つ選んで入る。\\
・生徒全員が部屋に入ったら、各部屋の生徒の人数を確認する。\\
・生徒全員が部屋を出る。\\
・1人の生徒しかいない部屋があった場合、その部屋に入った生徒は\\
次回以降の試行に参加しない。\\
\end{array}
\right.\\
\\
(\textrm{i})4人の生徒が試行(*)を1回行ったとき、2回目の試行に参加する生徒が\\
3人になる確率は\boxed{\ \ オ\ \ }である。\\
(\textrm{ii})5人の生徒が試行(*)を続けて2回行ったとき、3回目の試行に参加する\\
生徒が2人になる確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第3問〜複雑な反復試行と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
最初に袋の中に白玉が1個入っている。次の規則に従って、1回の操作につき
白玉または赤玉を1個ずつ加えていく。
・1回目の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個加
え、裏が出たときには白玉を袋の中に1個加える。
・2回目以降の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個
加え、裏が出たときには袋から玉を1個無作為に取り出し、その色を見てから
袋に戻し、さらに同じ色の玉を袋の中に1個加える。
(1) 2回目の操作を終えたとき、袋の中に白玉がちょうど2個入っている確率は
$\boxed{\ \ サ\ \ }$である。
(2) 3回目の操作を終えたとき、コインの表が2回、裏が1回出ていたという条件
の下で、袋の中に白玉がちょうど2個入っている条件つき確率は$\boxed{\ \ シ\ \ }$である。
以下、kは2以上の整数とし、k回目の操作を終えたときを考える。
(3)袋の中に白玉のみが入っている確率は$\boxed{\ \ ス\ \ }$である。
(4)1回目の操作で赤玉を加えたという条件の下で、袋の中に白玉がちょうどk個
入っている条件つき確率は$\boxed{\ \ セ\ \ }$である。
(5)袋の中に白玉がちょうどk個入っている確率は$\boxed{\ \ ソ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

京都大学 サイコロ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って$(n \geqq 2)$出た目の$($最大値$)-($最小値$)=x$とする
(1)
$x=1$となる確率

(2)
$x=5$となる確率

出典:2017年京都大学 過去問
この動画を見る 

福田のわかった数学〜高校1年生086〜確率(6)じゃんけんの確率(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{A} 確率(6) じゃんけん(2)\\
4人でじゃんけんをして負けたもの\\
から抜けていく。3回で1人の勝者\\
が決まる確率を求めよ。 
\end{eqnarray}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題095〜明治大学2020年度理工学部第1問(3)〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)A, B, C, D, Eの5人が、無作為に並び、手をつないでひとつの輪を作るという試行を考える。
(a)この試行を1回行うとき、AがBとCの2人と手をつなぐ確率は$\frac{\boxed{コ}}{\boxed{サ}}$である。
(b)この試行を3回行うとき、Aと3回手をつなぐ人が2人いる確率は$\frac{\boxed{シ}}{\boxed{スセ}}$である。
(c)この試行を3回行うとき、Aと3回手をつなぐ人が1人だけいる確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

2020明治大学理工学部過去問
この動画を見る 
PAGE TOP