【数C】平行四辺形状のマス目上にあるベクトルを表そう! - 質問解決D.B.(データベース)

【数C】平行四辺形状のマス目上にあるベクトルを表そう!

問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトルvec(p),vec(q)をvec(a),vec(b)で表せ。
チャプター:

00:00問題文
00:09 vec(p)の解説
01:14 vec(q)の解説

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトルvec(p),vec(q)をvec(a),vec(b)で表せ。
投稿日:2022.09.13

<関連動画>

福田の数学〜慶應義塾大学2023年理工学部第2問〜空間ベクトルと2直線から等距離にある点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $k$を正の実数とし、空間内に点O(0,0,0), A(4$k$, $-4k$, $-4\sqrt 2k$), B(7, 5, $-\sqrt 2$)をとる。点CはO, A, Bを含む平面上の点であり、OA=4BCで、四角形OACBはOAを底辺とする台形であるとする。
(1)$\cos\angle$AOB=$\boxed{\ \ ア\ \ }$である。台形OACBの面積を$k$を用いて表すと$\boxed{\ \ イ\ \ }$となる。
また、線分ACの長さを$k$を用いて表すと$\boxed{\ \ ウ\ \ }$となる。
(2)台形OACBが円に内接するとき、$k$=$\boxed{\ \ エ\ \ }$である。
(3)$k$=$\boxed{\ \ エ\ \ }$であるとし、直線OBと直線ACの交点をDとする。△OBPと△ACPの面積が等しい、という条件を満たす空間内の点P全体は、点Dを通る2つの平面上の点全体から点Dを除いたものとなる。これら2つの平面のうち、線分OAと交わらないものを$\alpha$とする。点Oから平面$\alpha$に下ろした垂線の長さは$\boxed{\ \ オ\ \ }$である。
この動画を見る 

【高校数学】 数B-8 ベクトルの成分①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において、ベクトル$\overrightarrow{ a }$を成分を用いて$\overrightarrow{ a }=(a_1,a_2)$と表し、$|\vec{ a }|=$①____となる。

◎右図のベクトルを成分で表し、それぞれの大きさを求めよう。

②$\overrightarrow{ b }$

③$\overrightarrow{ c }$

④$\overrightarrow{ a }$

※図は動画内参照
この動画を見る 

福田の数学〜青山学院大学2025理工学部第5問〜鋭角三角形の条件と垂心の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$\triangle OAB$は鋭角三角形であり、

$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$

を満たしている。

$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。

(1)$k$のとり得る値の範囲を求めよ。

上で与えた$\triangle OAB$の頂点$A,B$から

それぞれの対辺に下ろした$2$本の垂線の交点

を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。

(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。

(3)$3$点$O,H,C$が同一直線上にあるとき、

$k$の値と$\dfrac{OH}{OC}$を求めよ。

$2025$年青山学院大学理工学部過去問題
この動画を見る 

【数B】ベクトル:一次独立なベクトルで他のベクトルを扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題618
$\vec{a}=(2,5),\vec{b}=(1,3)$がある。次のベクトルを$\vec{a}+m \vec{b}$の形で表せ。
(1)$\vec{c}=(1,0)$
この動画を見る 

福田の数学〜回転の概念を使って考えるよ〜北里大学2023年医学部第3問〜ベクトルの漸化式と点列

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#ベクトルと平面図形、ベクトル方程式#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に 3 点 $A_{0} ( 0 , 0 ), B_{0} ( 2 , 0 ), C_{0}( 1 ,\sqrt{ 3 })$があり、線分$A_{0}B_{0},B_{0}C_{0},C_{0}A_{0}$をそれぞれ 2 : 1 に内分する点 $A_{1} ,B_{1} ,C_{1}$をとる。以下同様にして、正の整数nに対し、線分$A_{n}B_{n},B_{n}C_{n},C_{n}A_{n}$をそれぞれ 2 : 1 に内分する点$A_{n+1},B_{n+1},C_{n+1}$をとる。また、$\overrightarrow{ P_{n} }=\overrightarrow{ B_{n-1}B_{n} }(n=1,2,3,・・・)$とおく。
(1)$\overrightarrow{ p_{1} },\overrightarrow{ p_{2} }$をそれぞれ成分表示せよ。
(2)$\overrightarrow{ p_{n+2} }を\overrightarrow{ p_{n} }$を用いて表せ。
(3)$\displaystyle \sum_{k=1}^n \overrightarrow{ p_{2k-1}}$を$\overrightarrow{ p-1}$を用いて表せ。
(4)点B_{2n}の座標を求めよ。

2023北里大学医過去問
この動画を見る 
PAGE TOP