大学入試問題#81 東京大学(2012) 2次方程式【正確な問題文は概要欄】 - 質問解決D.B.(データベース)

大学入試問題#81 東京大学(2012) 2次方程式【正確な問題文は概要欄】

問題文全文(内容文):
$x,y$:実数
$2x^2+4xy+3y^2+4x+5y-4=0$を満たすとき、$x$のとりうる最大の値を求めよ。

出典:2012年東京大学 入試問題
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y$:実数
$2x^2+4xy+3y^2+4x+5y-4=0$を満たすとき、$x$のとりうる最大の値を求めよ。

出典:2012年東京大学 入試問題
投稿日:2022.01.06

<関連動画>

福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。

2015一橋大学文系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第1問〜絶対値の付いた2次関数の最小値(難)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq a \leqq b \leqq 1$を満たすa,bに対し、関数
$f(x)=|x(x-1)|+|(x-a)(x-b)|$
を考える。xが実数の範囲を動くとき、$f(x)$は最小値mをもつとする。
(1)$x \lt 0$および$x \gt 1$では$f(x) \gt m$となることを示せ。
(2)$m=f(0)$または$m=f(1)$であることを示せ。
(3)$a,b$が$0 \leqq a \leqq b \leqq 1$を満たして動くとき、mの最大値を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田の数学〜神戸大学2025理系第2問〜整数部分と小数部分

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

実数$a$に対して、$a$を超えない最大の整数を

$k$とするとき、

$a-k$を$a$の小数部分という。

$n$を自然数とし、$a_n=\sqrt{n^2+1}-n$とおく。

以下の問いに答えよ。

(1)$0\lt a_n \lt 1$が成り立つことを示せ。

(2)$b_n$を$\left(3n-\dfrac{1}{a_n}\right)$の小数部分とする。

$b_n$を$n$を用いて表せ。

(3)$b_n$を(2)で定めるものとする。

$m,n$を異なる$2$つの自然数とするとき、

$a_m+b_n \neq 1$であることを示せ。

$2025$年神戸大学理系過去問題
この動画を見る 

【高校数学】  数Ⅰ-73  特殊な最大・最小③

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎x,yが$x^2+y^2=16$を満たすとき、$6x+y^2$の最大値と最小値を求めよう。
この動画を見る 

3桁の数字が1089になる証明

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
任意の3桁の数とそれを逆から読んだ数のうち大きい方から小さい方を引いた3桁の数と、これを逆から読んだ3桁の数の和が1089になることを証明する動画です
この動画を見る 
PAGE TOP