福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part2 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part2

問題文全文(内容文):
$\Large\boxed{9}$ 関数$f(x)$と実数$t$に対し、$x$の関数$tx$-$f(x)$の最大値があればそれを$g(t)$と書く。
(1)$f(x)$=$x^4$のとき、任意の実数$t$について$g(t)$が存在する。この$g(t)$を求めよ。
以下、関数$f(x)$は連続な導関数$f''(x)$を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)$f'(x)$は増加関数、すなわち$a$<$b$ならば$f'(a)$<$f'(b)$
(ii)$\displaystyle\lim_{x \to -\infty}f'(x)$=$-\infty$ かつ $\displaystyle\lim_{x \to \infty}f'(x)$=$\infty$
(2)任意の実数$t$に対して、$x$の関数$tx$-$f(x)$は最大値$g(t)$を持つことを示せ。
(3)$s$を実数とする。$t$が実数全体を動くとき、$t$の関数$st$-$g(x)$は最大値$f(s)$となることを示せ。
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{9}$ 関数$f(x)$と実数$t$に対し、$x$の関数$tx$-$f(x)$の最大値があればそれを$g(t)$と書く。
(1)$f(x)$=$x^4$のとき、任意の実数$t$について$g(t)$が存在する。この$g(t)$を求めよ。
以下、関数$f(x)$は連続な導関数$f''(x)$を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)$f'(x)$は増加関数、すなわち$a$<$b$ならば$f'(a)$<$f'(b)$
(ii)$\displaystyle\lim_{x \to -\infty}f'(x)$=$-\infty$ かつ $\displaystyle\lim_{x \to \infty}f'(x)$=$\infty$
(2)任意の実数$t$に対して、$x$の関数$tx$-$f(x)$は最大値$g(t)$を持つことを示せ。
(3)$s$を実数とする。$t$が実数全体を動くとき、$t$の関数$st$-$g(x)$は最大値$f(s)$となることを示せ。
投稿日:2023.08.07

<関連動画>

【高校数学】数Ⅲ-98 対数関数の導関数①

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$

次の関数を微分せよ。

⑤$y=\log 6x$

⑥$y=\log(3x^2+1)$

⑦$y=x\log 2x$

⑧$y=\log_{10} (1-2x)$

⑨$y=\log \vert x^2-1 \vert$

⑩$y=\log_3 \vert x+5 \vert$
この動画を見る 

高専数学 微積II #6 n次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\log(2-x)$
の$x=0$における$n$次近似式の等式を求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系071〜接線(3)共通接線(1)

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 接線(3) 共通接線(1)
2曲線$\ y=e^xとy=\sqrt{x+a}$がともに点Pを通り、点Pにおいて共通の
接線をもつとき、aの値と接線の方程式を求めよ。
この動画を見る 

【高校数学】数Ⅲ-116 関数の極値①

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値①)
Q.次の関数の極値を求めよ

①$f(x)=\frac{x^2+2x+1}{x^2+1}$

➁$f(x)=x^2e^{-x}$

③$f(x)=\frac{\log x}{x^2}$
この動画を見る 

東工大 秀才栗崎 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?

出典:1992年東京工業大学 過去問
この動画を見る 
PAGE TOP