福田の数学〜東北大学2024年理系第6問〜円錐の側面と平面の交わりの曲線 - 質問解決D.B.(データベース)

福田の数学〜東北大学2024年理系第6問〜円錐の側面と平面の交わりの曲線

問題文全文(内容文):
$\Large{\boxed{6}}$ $xyz$空間内の$xy$平面上にある円C:$x^2$+$y^2$=1および円盤D:$x^2$+$y^2$≦1を考える。Dを底面とし点P(0,0,1)を頂点とする円錐をKとする。A(0,-1,0), B(0,1,0)とする。$xyz$空間内の平面H:$z$=$x$を考える。すなわち、Hは$xz$平面上の直線$z$=$x$と線分ABをともに含む平面である。Kの側面とHの交わりとしてできる曲線をEとする。$-\frac{\pi}{2}$≦$\theta$≦$\frac{\pi}{2}$を満たす実数$\theta$に対し、円C上の点Q($\cos\theta$,$\sin\theta$,0)をとり、線分PQとEの共有点をRとする。
(1)線分PRの長さを$r(\theta)$とおく。$r(\theta)$を$\theta$を用いて表せ。
(2)円錐Kの側面のうち、曲線Eの点Aから点Rまでを結ぶ部分、線分PA、および線分PRにより囲まれた部分の面積を$S(\theta)$とおく。$\theta$と実数$h$が条件0≦$\theta$<$\theta$+$h$≦$\frac{\pi}{2}$ を満たすとき、次の不等式が成り立つことを示せ。
$\frac{h\left\{r(\theta)\right\}^2}{2\sqrt 2}$≦$S(\theta+h)-S(\theta)$≦$\frac{h\left\{r(\theta+h)\right\}^2}{2\sqrt 2}$
(3)円錐Kの側面のうち、円Cの$x$≧0の部分と曲線Eにより囲まれた部分の面積をTとおく。Tを求めよ。必要であれば$\tan\frac{\theta}{2}$=$uとおく置換積分を用いてもよい。
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $xyz$空間内の$xy$平面上にある円C:$x^2$+$y^2$=1および円盤D:$x^2$+$y^2$≦1を考える。Dを底面とし点P(0,0,1)を頂点とする円錐をKとする。A(0,-1,0), B(0,1,0)とする。$xyz$空間内の平面H:$z$=$x$を考える。すなわち、Hは$xz$平面上の直線$z$=$x$と線分ABをともに含む平面である。Kの側面とHの交わりとしてできる曲線をEとする。$-\frac{\pi}{2}$≦$\theta$≦$\frac{\pi}{2}$を満たす実数$\theta$に対し、円C上の点Q($\cos\theta$,$\sin\theta$,0)をとり、線分PQとEの共有点をRとする。
(1)線分PRの長さを$r(\theta)$とおく。$r(\theta)$を$\theta$を用いて表せ。
(2)円錐Kの側面のうち、曲線Eの点Aから点Rまでを結ぶ部分、線分PA、および線分PRにより囲まれた部分の面積を$S(\theta)$とおく。$\theta$と実数$h$が条件0≦$\theta$<$\theta$+$h$≦$\frac{\pi}{2}$ を満たすとき、次の不等式が成り立つことを示せ。
$\frac{h\left\{r(\theta)\right\}^2}{2\sqrt 2}$≦$S(\theta+h)-S(\theta)$≦$\frac{h\left\{r(\theta+h)\right\}^2}{2\sqrt 2}$
(3)円錐Kの側面のうち、円Cの$x$≧0の部分と曲線Eにより囲まれた部分の面積をTとおく。Tを求めよ。必要であれば$\tan\frac{\theta}{2}$=$uとおく置換積分を用いてもよい。
投稿日:2024.04.22

<関連動画>

大学入試問題#363「置換からの部分積分?」 横浜国立大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ \frac{\pi}{2} }}x^3\cos(x^2)dx$

出典:2014年横浜国立大学 入試問題
この動画を見る 

#61数検1級1次「よくできた問題」

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$(x-1)^7-(x^7-1)$を実数係数の範囲で因数分解せよ

出典:数検1級1次
この動画を見る 

大学入試問題#96 横浜国立大学(2015) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ 3}\displaystyle \frac{dx}{e^x+5e^{-x}-2}$を求めよ。

出典:2015横浜国立大学 入試問題
この動画を見る 

大学入試問題#492「置換方法はいろいろ」 信州大学後期(2018) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \int_{2}^{n} \displaystyle \frac{dx}{\sqrt{ x^5+x^2 }}$

出典:2018年信州大学後期 入試問題
この動画を見る 

大学入試問題#175 名古屋工業大学2020 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{2x^3-x^2+5}{x^2+1}\ dx$を計算せよ。

出典:2020年名古屋工業大学 入試問題
この動画を見る 
PAGE TOP