メネラウスの定理の証明(数A) - 質問解決D.B.(データベース)

メネラウスの定理の証明(数A)

問題文全文(内容文):
メネラウスの定理の証明
動画内の図で$\displaystyle \frac{a}{b}\times\displaystyle \frac{c}{d}\times\displaystyle \frac{e}{f}$が$1$になることを証明してください。
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
メネラウスの定理の証明
動画内の図で$\displaystyle \frac{a}{b}\times\displaystyle \frac{c}{d}\times\displaystyle \frac{e}{f}$が$1$になることを証明してください。
投稿日:2019.11.02

<関連動画>

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
この動画を見る 

【高校数学】確率の基本性質~余事象の確率~ 2-4【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
15本のくじの中に当たりくじが5本ある。
この中から2本のくじを同時に引くとき、少なくとも1本は当たる確率を求めよ。
この動画を見る 

【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
この動画を見る 

【高校数学】整数の性質 方程式の問題ではこうやって範囲を絞り込もう!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$xy+yz+zx=xyz$を満たす自然数
$x,y,z$の組をすべて求めよ。
この動画を見る 

簡単な問題

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.

$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る 
PAGE TOP