福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}

2022中央大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}

2022中央大学理工学部過去問
投稿日:2022.10.24

<関連動画>

福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
この動画を見る 

藤田医科大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=1-\sqrt{3}i$
$Z^7+aZ^5-b=0$が成り立つ実数$a,b$を求めよ.

藤田医科大過去問
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
この動画を見る 

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 
PAGE TOP