問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}
2022中央大学理工学部過去問
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}
2022中央大学理工学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}
2022中央大学理工学部過去問
\begin{eqnarray}
{\large\boxed{4}}\ tを実数とし、xの3次式f(x) を\hspace{191pt}\\
f(x) = x^3 + (1-2t)x^2+(4-2t)x+4\hspace{131pt}\\
により定める。以下の問いに答えよ。\hspace{165pt}\\
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x) = 0 が虚数の\hspace{8pt}\\
解をもつようなtの範囲を求めよ。\hspace{174pt}\\
\\
実数tが (1) で求めた範囲にあるとき、方程式 f(x) = 0 の異なる2つの虚数解を\hspace{14pt}\\
α, βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。\hspace{19pt}\\
以下、α, β, γを複素数平面上の点とみなす。\hspace{131pt}\\
(2) α, β, γをtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点α\hspace{19pt}\\
が描く図形を複素数平面上に図示せよ。\hspace{152pt}\\
\\
(3) 3点α, β, γが一直線上にあるようなtの値を求めよ。\hspace{100pt}\\
\\
(4)3点α, β, γが正三角形の頂点となるようなtの値を求めよ。\hspace{76pt}\\
\end{eqnarray}
2022中央大学理工学部過去問
投稿日:2022.10.24