福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、放物線y=\frac{1}{2}x^2をC_1、放物線y=-(x-a)^2+bをC_2とする。\\
(1)C_1とC_2が異なる2点で交わるためのa,bの条件を求めよ。\\
以下、C_1とC_2は異なる2点で交わるとし、C_1とC_2で囲まれた図形の面積をSとする。\\
(2)S=16となるためのa,bの条件を求めよ。\\
(3)a,bはb \leqq a+3を満たすとする。このときSの最大値を求めよ。
\end{eqnarray}

2022名古屋大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、放物線y=\frac{1}{2}x^2をC_1、放物線y=-(x-a)^2+bをC_2とする。\\
(1)C_1とC_2が異なる2点で交わるためのa,bの条件を求めよ。\\
以下、C_1とC_2は異なる2点で交わるとし、C_1とC_2で囲まれた図形の面積をSとする。\\
(2)S=16となるためのa,bの条件を求めよ。\\
(3)a,bはb \leqq a+3を満たすとする。このときSの最大値を求めよ。
\end{eqnarray}

2022名古屋大学文系過去問
投稿日:2022.04.21

<関連動画>

福田の数学〜大阪大学2022年文系第3問〜6分の1公式の証明と面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)実数\alpha,\betaに対し、\\
\\
\int_{\alpha}^{\beta}(x-\alpha)(x-\beta)dx=\frac{(\alpha-\beta)^3}{6}\\
\\
が成り立つことを示せ。\\
(2)a,bをb \gt a^2を満たす定数とし、座標平面に点A(a,b)をとる。さらに、\\
点Aを通り、傾きがkの直線をlとし、直線lと放物線y=x^2で囲まれた部分の面積を\\
S(k)とする。kが実数全体を動くとき、S(k)の最小値を求めよ。
\end{eqnarray}

2022大阪大学文系過去問
この動画を見る 

名古屋大 積分 面積公式の証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$C:y=x^3-3x^2+2x$
原点を通り、原点以外でCと接する直線l
lとCで囲まれた部分の面積
この動画を見る 

【理数個別の過去問解説】2018年度一橋大学 数学 第5問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一橋大学2018年第5問
aを実数とし, $f(x)=x-x³,g(x)=a(x-x²)$とする。2つの曲線$y=f(x),y=g(x)$は$0<x<1$の範囲に共有点をもつ。
(1)aのとりうる値の範囲を求めよ。
(2)y=f(x)とy=g(x)で囲まれた2つの部分の面積が等しくなるようなaの値を求めよ。
この動画を見る 

数学「大学入試良問集」【11−3 円と放物線(面積)】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#熊本大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$A$を中心とする円$x^2+(y-a)^2=bb^2$が、放物線$y=x^2$と異なる2点$P,Q$で接している。
ただし、$a \gt \displaystyle \frac{1}{2}$とする。
次の各問いに答えよ。

(1)$a$と$b$の関係式を求めよ。
(2)$\triangle APQ$が正三角形のとき、円と放物線で囲まれた三日月形の面積を求めよ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第4問(3)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (3)$a$を定数とする。座標平面上の直線$y$=2$ax$+$\frac{1}{4}$と放物線$y$=$x^2$の2つの交点を$P_1$, $P_2$とする。$a$が0≦$a$≦1の範囲を動くとき、線分$P_1P_2$の通過する部分の面積は$\frac{\boxed{\ \ ル\ \ }}{\boxed{\ \ レ\ \ }}$である。
この動画を見る 
PAGE TOP