大学入試問題#75 横浜国立大学(2006) 部分積分 - 質問解決D.B.(データベース)

大学入試問題#75 横浜国立大学(2006) 部分積分

問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。

出典:2006年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。

出典:2006年横浜国立大学 入試問題
投稿日:2021.12.31

<関連動画>

【高校数学】岐阜大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分84日目~47都道府県制覇への道~【㉗岐阜】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
この動画を見る 

#会津大学2024#定積分_3#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$

出典:2024年会津大学
この動画を見る 

#福島大学2024#定積分_4#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x\sqrt{ 1-x }$ $dx$

出典:2024年福島大学
この動画を見る 

大学入試問題#519「一目はKing_property」 By にっし~Dairyさん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{e^x(1+2\tan\ x)}{\cos^2\ x} dx$
この動画を見る 

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 
PAGE TOP