大学入試問題#75 横浜国立大学(2006) 部分積分 - 質問解決D.B.(データベース)

大学入試問題#75 横浜国立大学(2006) 部分積分

問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。

出典:2006年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。

出典:2006年横浜国立大学 入試問題
投稿日:2021.12.31

<関連動画>

大学入試問題#92 東京医科大学(2015) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}(x\sqrt{ 1-x^2 })^3 dx$を計算せよ。

出典:2015年東京医科大学 入試問題
この動画を見る 

大学入試問題#532「技をかける前の味付け」 By 英語orドイツ語さん #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin\ x)log(1+e^x)\ dx$
この動画を見る 

福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}$
を満たしている。このとき,
$A= \int_0^{\pi}tf(t)\cos tdt$,
$B=\int_0^{\pi}tf(t)\sin tdt... ①$
とおいて$f(x)$をAとBで表すと、
$f(x)=A×(\ \ \ \boxed{ア}\ \ \ )+B×(\ \ \ \boxed{イ}\ \ \ )+\frac{1}{4}... ②$
となる。ここで、

$\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{ウ},\ \ \ \int_0^{\pi}t\sin tdt=\pi$
$\int_0^{\pi}t\sin^2 tdt=\boxed{エ},\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{オ}$

を用い、①に②を代入して整理すると、AとBの満たす連立方程式

$\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.$

が得られる。この連立方程式を解くと
$A=\frac{\boxed{ク}}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{ケ}\ \ \ )}{\pi^4-\pi^2-16}$
が得られ、したがって
$f(x)= \frac{\boxed{ク}}{\pi^4-\pi^2-16}×(\ \ \ \boxed{ア}\ \ \ )+$
$\frac{\pi (\ \ \ \boxed{ケ}\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{イ}\ \ \ )+\frac{1}{4}$
となる。

$\boxed{ア},\boxed{イ}$の解答群
$ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x$
$ⓔ\tan x\ \ \ ⓕ-\tan x$

$\boxed{ウ},\boxed{エ},\boxed{オ}$の解答群
$ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi $
$ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}$
$ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}$
$ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}$

$\boxed{カ},\boxed{キ},\boxed{ク},\boxed{ケ}$の解答群
$ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2$
$ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4$
$ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6$
$ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8$

2022中央大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part1〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 

大学入試問題#360「もっとスマートな解答がありそう・・・」 宮崎大学2014 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^3+3x^2}{x^2+3x+2}dx$

出典:2014年宮崎大学
この動画を見る 
PAGE TOP