【中学数学】三平方の定理:[正多角形の面積]正三角形・正方形編 - 質問解決D.B.(データベース)

【中学数学】三平方の定理:[正多角形の面積]正三角形・正方形編

問題文全文(内容文):
三平方の定理を用いて
・一辺の長さしか分かっていない正三角形の面積
・対角線の長さしか分かっていない正方形の面積
を求めます。
チャプター:

0:00 オープニング
0:24 正多角形とは
0:40 正三角形
3:07 正方形
4:19 エンディング

単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 理数個別チャンネル
問題文全文(内容文):
三平方の定理を用いて
・一辺の長さしか分かっていない正三角形の面積
・対角線の長さしか分かっていない正方形の面積
を求めます。
投稿日:2022.03.09

<関連動画>

四捨五入

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{65}-\sqrt{63}$の小数第三位を四捨五入せよ.
この動画を見る 

【高校受験対策/数学】死守-92

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92

①$12÷(-4)$を計算しなさい。

②$\sqrt{3}×\sqrt{8}$を計算しなさい。

③$(x-4)(x-5)$を展開しなさい。

④二次方程式$x^2-5x+3=0$を解きなさい。

⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。

⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。

⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。

⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る 

【高校受験対策】数学-死守12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の問いに答えよ.

①$5 \times (-4)^2 -3^2$を計算せよ.

②$\dfrac{5x-3y}{3}-\dfrac{3x-7y}{4}$を計算せよ.

③$\sqrt{27}-\dfrac{12}{\sqrt 3}-\sqrt{75}$を計算せよ.

④$x=\sqrt7+2,y=\sqrt7-2$のとき,
$x^2-y^2$の値を求めよ.

⑤方程式$2x+3y+6=0$のグラフをかけ.

⑥2次方程式$(x-2)^2=6$を解け.

⑦$1,2,4,8,16,32$の数が書かれた棒が1本ずつ入っている箱がある.
この箱から棒を同時に2本取り出すとき,
2本の棒に書かれている数の和が3の倍数となる確率を求めよ.
ただし,どの棒の取り出し方も同様に確からしいものとする.

⑧箱の中に白い玉だけがたくさん入っている.
この箱に赤い玉を80個入れてよくかき混ぜ,箱から50個の玉を無作為に取り出すと,
赤い玉が9個含まれていた.
最初に箱の中に入っていた白い玉はおよそ何個であると推測されるか,
次の(ア)~(エ)から1つ選べ.

(ア)およそ320個
(イ)およそ360個
(ウ)およそ400個
(エ)およそ440個

図は動画内を参照
この動画を見る 

【保存版】円を三等分する方法

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】円を三等分する方法について解説しています。
※図は動画内参照
この動画を見る 

甲陽学院高校 整数問題 高校入試

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中3数学#平方根#過去問解説(学校別)#甲陽学院中学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$S_n=1!+2!+3!+…+n!$
$S_n$が平方数となる$n$を全て求めよ

(1)
$5!$を求めよ
$S_{10}$の1の位

出典:甲陽学院高等学校 入試問題
この動画を見る 
PAGE TOP