大学入試問題#798「微分方程式の基礎トレーニング」 横浜国立大学(2024) #微分方程式 - 質問解決D.B.(データベース)

大学入試問題#798「微分方程式の基礎トレーニング」 横浜国立大学(2024) #微分方程式

問題文全文(内容文):
実数全体で定義された連続関数$f(x)$が、すべての実数$x$に対して$f(x) \gt 0,$かつ
$f(x)=\displaystyle \int_{0}^{ x } \displaystyle \frac{t}{(t^2+1)f(t)} dt+1$を満たすとき、$f(x)$を求めよ。

出典:2024年横浜国立大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
実数全体で定義された連続関数$f(x)$が、すべての実数$x$に対して$f(x) \gt 0,$かつ
$f(x)=\displaystyle \int_{0}^{ x } \displaystyle \frac{t}{(t^2+1)f(t)} dt+1$を満たすとき、$f(x)$を求めよ。

出典:2024年横浜国立大学
投稿日:2024.04.22

<関連動画>

【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る 

津田塾大 格子点 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#数学(高校生)#津田塾大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは互いに素な自然数
(1)A(p,0),B(0,q)
 線分AB上には、A,B以外には格子点がないことを示せ
(2)△OABの内部(周上は含まない)の格子点の個数
*図は動画内参照
この動画を見る 

数学「大学入試良問集」【14−2 円と直線と平面ベクトルと。】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#立命館大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
点$O$を中心とする円に内接する$\triangle ABC$があり、$AB=2,\ AC=3,\ BC=\sqrt{ 7 }$とする。
点$B$を通り直線$AC$の平行な直線と円$O$との交点のうち、点$B$と異なる点を$D$、直線$AO$と直線$CD$の交点を$E$とする。

(1)内積$\overrightarrow{ AB }・\overrightarrow{ AO },\overrightarrow{ AC }・\overrightarrow{ AO }$を求めよ。

(2)$\overrightarrow{ AO }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。

(3)$\overrightarrow{ AD }$を$\overrightarrow{ AB }$と$\overrightarrow{ AC }$を用いて表せ。

(4)$CE:DE$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第1問(3)〜連立漸化式と複素数平面

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$x_0=0,y_0=-1$のとき、非負整数$n\geqq 0$に対して、
$x_{n+1}=(\cos \frac{3\pi}{11})x_n-(\sin \frac{3\pi}{11)}y_n$
$y_{n+1}=(\cos \frac{3\pi}{11})x_n+(\sin \frac{3\pi}{11)}y_n$
のとき、$x_n$が最小となる最初のnを求めよ。

2023早稲田大学教育学部過去問
この動画を見る 

大学入試問題#873「コメント欄が賑わいそう」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{4} \displaystyle \frac{2}{(x+1)(x+2)(x+3)} dx$

出典:2022年東京理科大学 大学入試問題
この動画を見る 
PAGE TOP