【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
チャプター:

0:00 問題と方針
1:01 (1)の解説
3:29 (2)の解説

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|r| \lt 1$ のとき $\displaystyle\lim_{n \to \infty} n r^n = 0$ である。
このことを利用して$,$ 次の無限級数の和を求めよ。ただし$,$ $|x| < 1$ とする。
$(1)$ $\displaystyle \frac{1}{3}$ $+ \displaystyle \frac{2}{9}$ $+\displaystyle \frac{3}{27}$ $+ \cdots \cdots$ $
+\displaystyle \frac{n}{3^n}$ $ + \cdots \cdots$
$(2)$ $1 + 2x + 3x^2 $$ + \cdots \cdots $$ + n x^{n-1} + \cdots \cdots$
投稿日:2025.12.04

<関連動画>

大学入試問題#122 愛知県立大学(2020) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{1}{x^x}(x-a)^x$を求めよ。

出典:2020年愛知県立大学 入試問題
この動画を見る 

数学「大学入試良問集」【17−5 図形と三角関数の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$O$を原点とする座標平面上に2点$A(2,0),B(0,1)$がある。
自然数$n$に対し、線分$AB$を$1:n$に内分する点を$P_n$とし、$\angle AOP_n\theta_n$とする。
ただし、$0 \lt \theta_n \lt \displaystyle \frac{\pi}{2}$である。
線分$AP_n$の長さを$l_n$として、$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{l_n}{\theta_n}$を求めよ。
この動画を見る 

【数Ⅲ】極限:岐阜大の類題! 複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。

単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。


この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列a₁=8、an+₁=3an+4/an+3(1)bn=1/an-2とおくとき、{bn}の一般項を求めよ。(2){an}の一般項とその極限を求めよ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$について、次の問いに答えよ。
$a_1=8$、$a_{n+1}=\dfrac{3a_n+4}{a_n+3}$
(1) $b_{n}=\dfrac{1}{a_n-2} $とおくとき、$b_n$の一般項を求めよ。
(2) $a_n$の一般項とその極限を求めよ。
この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の極限を求めよ。a₁=0、a₂=1、3an+₂=an+₁+2an他

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の極限を求めよ。
(1) $a₁=0$、$a₂=1$、$3a_{n+2}=a_{n+1}+2a_n$
(2) $a₁=0$、$a₂=1$、$a_{n+2}-7a_{n+1}+10a_n=0$
(3) $a₁=1$、$a₂=2$、$a_{n+2}-6a_{n+1}+9a_n=0$
この動画を見る 
PAGE TOP