福田の数学〜中央大学2023年経済学部第1問(6)〜絶対値の付いた定積分 - 質問解決D.B.(データベース)

福田の数学〜中央大学2023年経済学部第1問(6)〜絶対値の付いた定積分

問題文全文(内容文):
次の定積分の値を求めよ。
$\displaystyle \int_{0}^{4} |x^2-2x-3| dx$

2023中央大学経済学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の定積分の値を求めよ。
$\displaystyle \int_{0}^{4} |x^2-2x-3| dx$

2023中央大学経済学部過去問
投稿日:2023.10.01

<関連動画>

【短時間でポイントチェック!!】定積分で表された関数の極値を求める問題〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$f(x)=\displaystyle \int_{2}^{x} t(t-2)dt$の極値を求めよ。
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る 

大学入試問題#898「教科書例題」 #千葉大学(2024)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす$x \gt 0$で定義された関数$f(x)$と定数$a$の値を求めよ。
ただし、$a \gt 0$とする。
$\displaystyle \int_{a}^{x} f(t) dt=x+\displaystyle \frac{1}{2}log$ $x-1$

出典:2024年千葉大学
この動画を見る 

大阪大 区分求積法 ヨビノリ病欠 代講ヤス

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \sum_{k=1}^n \displaystyle \frac{[\sqrt{ 2n^2-k^2 }]}{n^2}$

$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2000年大阪大学 過去問
この動画を見る 

東大 積分 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
この動画を見る 
PAGE TOP