【等比数列の極限!】無限等比級数の基礎と求め方を解説!【数学III】 - 質問解決D.B.(データベース)

【等比数列の極限!】無限等比級数の基礎と求め方を解説!【数学III】

問題文全文(内容文):
無限等比級数の基礎と求め方を解説します。
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
無限等比級数の基礎と求め方を解説します。
投稿日:2023.05.26

<関連動画>

福田のおもしろ数学158〜無理不等式と同値変形

アイキャッチ画像
単元: #関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
不等式$\sqrt{2x+1}$≧$x$-1 ...(*)を
(1)同値変形することで解け。 (2)グラフを利用して解け。
この動画を見る 

【高校数学】数Ⅲ-69 数列の極限⑤(無限等比数列)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}3^n$

②$\displaystyle \lim_{n\to\infty}1^n$

③$\displaystyle \lim_{n\to\infty}\left(-\dfrac{1}{3}\right)^n$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{3^n+4^n}{5^n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{2^n}{1+2^n}$

⑦$\displaystyle \lim_{n\to\infty}\dfrac{5^n+3^n}{2^n-3^n}$

⑧$\displaystyle \lim_{n\to\infty}\dfrac{2^{n+1}-4^{n+1}}{3^n-4^n}$
この動画を見る 

【高校数学】数Ⅲ-64 合成関数③

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2つの関数$f(x)=ax-3,g(x)=-x+a$について、
$(fog)(x)$がつねに成り立つように、定数$a$の値を定めよ。

②関数$f(x)=\dfrac{x+1}{-2x+3},g(x)=\dfrac{ax-1}{bx+c}$について、
$(gof)(x)=x$が成り立つとき、定数$a,b,c$を求めよ。
この動画を見る 

福田の数学〜青山学院大学2024理工学部第5問〜関数の増減と無限級数の収束発散の判定

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
$(1)$ 関数 $\displaystyle{y=\frac{x}{x^2+1}}$ の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフを描け。
$(2)$ $k$ を自然数とする。曲線 $\displaystyle{y=\frac{x}{x^2+1}}$ と $x$ 軸および2直線 $x=k$, $x=k+1$ で囲まれた図形の面積を $k$ を用いて表せ。
$(3)$ 無限級数
\begin{equation*}
\frac{1}{1^2+1}+\frac{2}{2^2+1}+\frac{3}{3^2+1}+\cdots+\frac{n}{n^2+1}+\cdots
\end{equation*}
の収束、発散を調べよ。
この動画を見る 

【高校数学】数Ⅲ-95 合成関数の微分法②

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=\sqrt{x^2-3x-1}$

②$y=\sqrt{(2x-3)^3}$

③$y=\left(\dfrac{2x}{x^2+1}\right)^4$

④$y=\sqrt{\dfrac{x+1}{x-3}}$
この動画を見る 
PAGE TOP