数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく

問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
投稿日:2021.03.19

<関連動画>

【高校数学】 数Ⅱ-21 不等式の証明③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。

①$3a+\displaystyle \frac{5}{a} \geqq 2\sqrt{ 15 }$

②$(a+2b)(\displaystyle \frac{2}{a}+\displaystyle \frac{1}{b}) \geqq 8$
この動画を見る 

【数Ⅱ】【式と証明】等式の証明5 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\dfrac {(x+y)}{2z}=\dfrac{(y+z)}{2x}=\dfrac{(z+x)}{2y}$のとき、この式の値を求めよ。
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+4)^{12}$を$x^2+6x+12$で割った余りを求めよ.
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+\dfrac{5}{\sqrt a}=26$
$a^2-27a+10$の値を求めよ.
この動画を見る 

【数Ⅱ】式と証明:恒等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。

$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
この動画を見る 
PAGE TOP