福田の数学〜慶應義塾大学看護医療学部2025第2問(3)〜数学的帰納法 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学看護医療学部2025第2問(3)〜数学的帰納法

問題文全文(内容文):

$\boxed{2}$

(3)自然数$n$に対して、

$3^n-2n-1$が

$4$の倍数であることの数学的帰納法を

用いた証明を記述しなさい。

$2025$年慶應義塾大学看護医療学部過去問題
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(3)自然数$n$に対して、

$3^n-2n-1$が

$4$の倍数であることの数学的帰納法を

用いた証明を記述しなさい。

$2025$年慶應義塾大学看護医療学部過去問題
投稿日:2025.05.01

<関連動画>

福田の数学〜誘導付き3項間の漸化式を解く〜明治大学2023年全学部統一ⅠⅡAB第1問(1)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。

2023明治大学全統過去問
この動画を見る 

【数B】数列: 等差×等比型の数列和! ∑[k=1からn]k・2^kの和を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \sum_{k\to1}^k・2^k$の和を求めよ.
この動画を見る 

【高校数学】 数B-89 漸化式③

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,a_{n+1}=3a_n-2$

②$a_1=-2,4a_{n+1}=5a_n+4$
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(5)連立漸化式〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。
$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=4a_n+b_n\\
b_{n+1}=a_n+4b_n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
b_1=2\\
\end{array}
\right.
\end{eqnarray}$


$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+4b_n\\
b_{n+1}=a_n+b_n\\
\end{array}
\right.
\end{eqnarray}$  

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
b_1=1\\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

埼玉大(経済)典型的な連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n$の一般項
$a_1=b_1=1$
$a_{n+1}=a_n+4b_n$
$b_{n+1}=a_n+b_n$を求めよ.

埼玉大過去問
この動画を見る 
PAGE TOP