自治医科大 円の方程式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

自治医科大 円の方程式 Mathematics Japanese university entrance exam

問題文全文(内容文):
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ

出典:2008年自治医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ

出典:2008年自治医科大学 過去問
投稿日:2019.03.13

<関連動画>

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線y=ax+1が 異なる2点A,Bで交わっている。 (1)aの範囲を求めなさい。
この動画を見る 

円を表す方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円を表す方程式
*図は動画内参照
この動画を見る 

【秘技を覚えよ】円の接線の方程式

アイキャッチ画像
単元: #数Ⅱ#円と方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
円の接線の方程式解説動画です
-----------------
直線$y=\sqrt{ 3 }x$と、円$(x-3)^2+y^2=4$の交点を通る、円$(x-3)^2+y^2=4$上の接線の方程式を求めよ。
この動画を見る 

【数Ⅱ】円を表す方程式【図形と方程式の関係】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: めいちゃんねる
問題文全文(内容文):
円を表す方程式を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(2)点Aを、放物線$C_1:y=x^2$上にある点で、第1象限($x \gt 0$かつ$y \gt 0$の範囲)
に属するものとする。そのうえで、次の条件を満たす放物線
$C_2:y=-3(x-p)^2+q$ を考える。
1.点Aは、放物線$C_2$上の点である。
2.放物線$C_2$の点Aにおける接線をlとするとき、lは放物線$C_1$の点Aにおける
接線と同一である。
点Aの座標を$A(a,a^2)$とするとき、
$p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2$
と表せる。また、直線$l$、放物線$C_2$、および直線$x=p$で囲まれた部分の
面積は$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3$ である。

2021慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP