自治医科大 円の方程式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

自治医科大 円の方程式 Mathematics Japanese university entrance exam

問題文全文(内容文):
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ

出典:2008年自治医科大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
円:$(x+5)^2+y^2=89$と直線$x+y=8$の交点を通り、$x=-3$に接する円の半径を求めよ

出典:2008年自治医科大学 過去問
投稿日:2019.03.13

<関連動画>

【数Ⅱ】2つの円の位置関係・交点を通る直線または円の方程式【知らないと解けない知識問題】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 2円x^2+y^2-10=0,x^2+y^2+2x-2y-6=0が2点で交わることを示せ.$
この動画を見る 

福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る 

重積分⑧-1【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
楕円面$\frac{x^2}{a^2}+ \frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
で囲まれる立体の体積Vを求めよ $(a,b,c > 0)$
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(3)〜2つの円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)座標平面上の3点(2,3),(-5,10),(-2,1)を通る円をC_1とする。この
とき、C_1の中心は$(-\boxed{ナ}, \boxed{ニ})$、半径は$\boxed{ヌ}$である。
$C_1$と点(2,3)で外接し、x軸とも接している円を$C_2$とする。このとき、
$C_2$の中心は$(\frac{\boxed{ネ}}{\boxed{ノ}},\frac{\boxed{ハヒ}}{\boxed{フ}})、半径は\frac{\boxed{ヘホ}}{\boxed{マ}}$である。

2022東京理科大学理工学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題064〜明治大学2019年度理工学部第2問〜円と放物線の位置関係

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。

2019明治大学理工学部過去問
この動画を見る 
PAGE TOP