福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算 - 質問解決D.B.(データベース)

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
投稿日:2023.12.03

<関連動画>

【高校数学】反復試行の確率~今までとの違いとつながり~ 2-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
白玉2個、赤玉4個が入っている袋から玉を1個取り出し、色を調べてから元に戻す。
この試行を6回続けて行うとき白玉が5回以上出る確率を求めよ。
この動画を見る 

【数A】場合の数:完全順列をプレゼント交換で説明

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
完全順列をプレゼント交換で説明してみた。
この動画を見る 

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

香川大(医)確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1回に1個ずつ同時に入れかえる.
$n$回目に$A$である確率を求めよ.

2021香川大(医)過去問
この動画を見る 

最短経路 他の問題もあり

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
最短経路
AからBまで最短距離で行く。
(1)全部で何通り?
(2)Dを通らない場合は何通り?
(3)Eを通らない場合は何通り?
(4)CもDも通る場合は何通り?
(5)CもDも通らない場合は何通り?
この動画を見る 
PAGE TOP