福田の数学〜慶應義塾大学2022年薬学部第1問(4)〜2次関数と積分の確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年薬学部第1問(4)〜2次関数と積分の確率

問題文全文(内容文):
(4)f(x)はxの2次関数である。$f(x)$は$x=-2$で極値をとり、$\int_{-3}^0f(x)dx=0$
を満たす。またxy平面上において、f(x)のグラフ$y=f(x)$はx軸と異なる2点で交わり、
$y=f(x)$とx軸で囲まれる部分の面積は$\frac{8}{3}$である。このとき$f(x)=\boxed{\ \ キ\ \ }$である。

2022慶應義塾大学薬学部過去問
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(4)f(x)はxの2次関数である。$f(x)$は$x=-2$で極値をとり、$\int_{-3}^0f(x)dx=0$
を満たす。またxy平面上において、f(x)のグラフ$y=f(x)$はx軸と異なる2点で交わり、
$y=f(x)$とx軸で囲まれる部分の面積は$\frac{8}{3}$である。このとき$f(x)=\boxed{\ \ キ\ \ }$である。

2022慶應義塾大学薬学部過去問
投稿日:2022.03.01

<関連動画>

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 

2022年藤田医科大 確率 超基本問題

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3回振って目の積が8の倍数となる確率を求めよ.

藤田医科大過去問
この動画を見る 

佐賀大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022年 佐賀大学 過去問

1枚のコインをくり返し投げ、表の出る回数が
ちょうど$n$回目で5回となる確率を$P_n$

①$P_n$を$n$の式で

②$P_n$の最大値
この動画を見る 

福田の数学〜明治大学2024理工学部第1問(4)〜部屋分けの方法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$5$ 人の中学生 $\mathrm{A,B,C,D,E}$ と $3$ 人の高校生 $\mathrm{F,G,H}$ の合計 $8$ 人の生徒が、 $2$ つの部屋 $\mathrm{X,Y}$ に分かれて入る。ただし、どの生徒も必ずどちらかの部屋に入るものとする。
(a) どちらの部屋にも $1$ 人以上の生徒が入るような入り方は $\fbox{トナニ}$ 通りである。
(b) どちらの部屋にも $1$ 人以上の中学生が入るような入り方は $\fbox{ヌネノ}$ 通りである。
(c) どちらの部屋にも $1$ 人以上の中学生と $1$ 人以上の高校生が入るような入り方は $\fbox{ハヒフ}$ 通りである。
(d) どちらの部屋も中学生の人数が高校生の人数より多くなるような入り方は $\fbox{ヘホ}$ 通りである。ただし、どちらの部屋にも $1$ 人以上の高校生が入るものとする。
この動画を見る 

【数A】条件付き確率の考え方

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1/3 の確率で肝心なものを忘れるAOIさん 坂田アキラの「確率」が面白いほどとける本
この動画を見る 
PAGE TOP