2023高校入試解説22問目 二乗の和で表せ①昭和学院秀英(改) - 質問解決D.B.(データベース)

2023高校入試解説22問目  二乗の和で表せ①昭和学院秀英(改)

問題文全文(内容文):
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。

2023昭和学院秀英高等学校
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。

2023昭和学院秀英高等学校
投稿日:2023.01.24

<関連動画>

大阪市立大 奇数の和 奇数の平方の和

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$

①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.

2021大阪市立大過去問
この動画を見る 

一文字削除からの判別式【2014年早稲田大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。

2014早稲田大過去問
この動画を見る 

これ全部わかる?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
①$1^0$

②$\sqrt[ 3 ]{ 27 }$

③$2^2$

④$7-1$

⑤$\sqrt{ 49 }$

⑥$2^3$

⑦$\sqrt{ 81 }$

⑧$5+5$

⑨$\sqrt{ 144 }$
この動画を見る 

北海道医療大(薬・歯)式の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\dfrac{\sqrt5-1}{2}$である.
$\dfrac{1}{a}+\dfrac{1}{a^3}+\dfrac{1}{a^5}+\dfrac{1}{a^7}$の値を求めよ.

北海道医療大(薬・歯)過去問
この動画を見る 

【数Ⅰ】【集合と論証】集合:ベン図を利用した問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#集合と命題#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U=\{1,2,3,4,5,6,7,8,9\}$を全体集合とする。$U$の部分集合$A,B$について
$A∩B=\{2\}$ $\overline{A}∩B=\{4,6,8\}$ $ \overline{A}∩\overline{B}=\{1,9\}$
であるとき、次の∩を求めよ。
(1)$A∪B$
(2)$B$
(3)$A∩\overline{B}$

$U=\{x|1≦x≦10、xは整数\}$を全体集合とする。$U$の部分集合
$A=\{1,2,3,4,8\} B=\{3,4,5,6\} C=\{2,3,6,7\}$
について、次の集合を求めよ。
(1)$A∩B∩C$
(2)$A∪B∪C$
(3)$A∩B∩\overline{C}$
(4)$\overline{A}∩B∩\overline{C}$
(5)$\overline{(A∩B∩C)}$
(6)$(A∪C)∩\overline{B}$

$A=\{1,3,3a-2\}$  $B=\{-5、a+2、a^2-2a+1\}$ $A∩B=\{1,4\}$のとき
定数$a$の値と和集合$A∪B$を求めよ。
この動画を見る 
PAGE TOP