【数Ⅱ】【微分法と積分法】方程式の解の個数5 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】方程式の解の個数5 ※問題文は概要欄

問題文全文(内容文):
方程式2x³-3x²-36x=aが1個の正の解と2個の負の解をもつように、定数aの値の範囲を定めよ。
チャプター:

0:00 問題概要
1:30 解答

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式2x³-3x²-36x=aが1個の正の解と2個の負の解をもつように、定数aの値の範囲を定めよ。
投稿日:2025.02.25

<関連動画>

福田の数学〜早稲田大学2025社会科学部第3問〜三角関数の最大最小と三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$\theta$の関数

$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$

を考える。

ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。

(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、

$f(\theta)$を$k$の関数で表せ。

(2)$f(\theta)$の最大値、最小値を求めよ。

また、そのときの$\theta$の値を求めよ。

(3) (1)の$k$に対して、$\theta$の方程式

$f(\theta)=ak$の解の個数を求めよ。

ただし、定数$a$は$0\lt a \leqq 3$とする。

$2025$年早稲田大学社会科学部過去問題
この動画を見る 

福田のわかった数学〜高校3年生理系080〜グラフを描こう(2)三角関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(2)
$y=\cos2x-2\cos x  (0 \leqq x \leqq 2\pi)$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

福田のおもしろ数学464〜素数でないことを証明する

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b,c,d$が

$ab=cd$を満たすとする。

このとき、

$a+b+c+d$が

素数でないことを証明せよ。
    
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(1)〜三角形と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(1)三角形$\rm ABC$において、$\rm \angle B=2\alpha, \angle C=2\beta$とする。
$\tan\alpha\tan\beta=x, \rm \dfrac{AB+AC}{BC}=y$
とするとき、$y$を$x$で表すと、$y=\boxed{ア}$となる。

2021早稲田大学商学部過去問
この動画を見る 

2023京都大学 正五角形の一辺の長さ

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\cos2\theta,\cos3\theta$を$\cos\theta$を用いて表せ.
(2)半径1の円に内接する正五角形の一辺の長さと1.15の大小比較せよ.

2023京都大過去問
この動画を見る 
PAGE TOP