【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など) - 質問解決D.B.(データベース)

【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)

問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$

(2)
$y=x\sin3x$

(3)
$y=\sin x\cos x$
単元: #三角関数#微分法#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$

(2)
$y=x\sin3x$

(3)
$y=\sin x\cos x$
投稿日:2021.08.07

<関連動画>

福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。

2021北里大学医学部過去問
この動画を見る 

数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。

一橋大過去問
この動画を見る 

対数関数の微分公式

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0$であり,実数解である.
$x^{x^{77}}=77$
この動画を見る 

福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る 

福田の数学〜微分可能である条件とは何か〜明治大学2023年理工学部第1問(1)〜微分可能であるための条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)$a$,$b$,$c$を実数の定数とし、関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
\displaystyle\frac{1+3x-a\cos 2x}{4x} (x>0)\\
bx+c       (x≦0)\\
\end{array}\right.$
で定める。$f(x)$が$x$=0で微分可能であるとき
$a$=$\boxed{\ \ ア\ \ }$, $b$=$\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}$, $c$=$\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$
である。
この動画を見る 
PAGE TOP