【数学Ⅱ/積分】関数の決定(定積分) - 質問解決D.B.(データベース)

【数学Ⅱ/積分】関数の決定(定積分)

問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=3x^2+4x+\displaystyle \int_{-1}^{1} f(t) dt$
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=3x^2+4x+\displaystyle \int_{-1}^{1} f(t) dt$
投稿日:2022.02.24

<関連動画>

大学入試問題#770「減点注意!」 千葉大学(2003) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a$は定数とし、$n$は2以上の整数とする。
関数$f(x)=ax^n log\ x-ax(x \gt 0)$の最小値が-1のとき、定積分$\displaystyle \int_{1}^{e} f(x)\ dx$の値を$n$と$e$を用いて表せ。

出典:2003年千葉大学 入試問題
この動画を見る 

大学入試問題#925「初手が見えれば一直線」 #関西大学2023

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \left(\dfrac{1}{\sqrt x}\ \sin\ (3\sqrt x)\ \cos \ (5\sqrt x)\right)dx$
を解け.

2023関西大学過去問題
この動画を見る 

【数Ⅱ】【微分法と積分法】条件からの関数決定1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + c$において、
$f(-1) = 2$, $f'(0) = 0$, $\int_{0}^{1} f(x) \,dx = -2$であるとき、
定数 a, b, c の値を求めよ。
この動画を見る 

大学入試問題#823「置換するかどうか」 #筑波大学(2019) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (x+1)^2e-(x+1) dx$

出典:2019年筑波大学
この動画を見る 

【数Ⅱ】微分法と積分法:立体図形の見方・捉え方を千葉大の過去問の類題を例に説明します!!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #7つの大解法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、$OA=OB=OC=1、∠BAC=90°$のとき、この四面体の体積Vの最大値を求めよ。
この動画を見る 
PAGE TOP