【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める - 質問解決D.B.(データベース)

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
チャプター:

0:00 オープニング
0:10 係数比較で解く
5:48 メネラウスの定理を用いて解く
7:39 エンディング

単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
投稿日:2022.11.02

<関連動画>

【数C】ベクトルの基本⑰2直線のなす鋭角を求める

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線√3x+3y-1=0, -x+√3y-2=0のなす鋭角αを求めよ
この動画を見る 

数学を数楽にの川端さん三乗

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
座標関係の図形の求め方に関して解説していきます.
この動画を見る 

【数B】ベクトルの大きさ、単位ベクトルとは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vert \overrightarrow{a}\vert=5$である$\overrightarrow{a}$がある。
(1) $\overrightarrow{a}$と同じ向きの単位ベクトルを、$\overrightarrow{a}$を用いて表せ。
(2) $\overrightarrow{a}$と平行で、大きさが3のベクトルを、$\overrightarrow{a}$を用いて表せ。
この動画を見る 

【数C】ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式
この動画を見る 

福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}

2022筑波大学理系過去問
この動画を見る 
PAGE TOP