福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(19) なす角(3)\hspace{190pt}\\
2点A(0,2), B(0,8)がある。点P(a,0) (a \gt 0)について\angle APBが最大となるaは?
\end{eqnarray}
投稿日:2021.11.24

<関連動画>

福田の数学〜立教大学2021年理学部第2問〜2直線のなす角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 座標平面において、放物線y=x^2上の点でx座標がp,p+1,p+2である点を\\
それぞれP,Q,Rとする。また、直線PQの傾きをm_1、直線PRの傾きをm_2、\\
\angle QPR=\thetaとする。\\
\\
(1)m_1,\ m_2をそれぞれ\ p\ を用いて表せ。\\
(2)pが実数全体を動くとき、m_1m_2の最小値を求めよ。\\
(3)\tan\thetaを\ p\ を用いて表せ。\\
(4)pが実数全体を動くとき、\thetaが最大になる\ p\ の値を求めよ。
\end{eqnarray}

2021立教大学理工学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(3)〜三角関数の最大最小の種類

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)関数f(\theta)=\cos2\theta+2\cos\thetaが0 \leqq \theta \leqq \pi の範囲で最小値をとるのは\theta=\boxed{\ \ ア\ \ }\\
のときであり、最大値を取るのは\theta=\boxed{\ \ イ\ \ }\ のときである。\hspace{70pt}
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

京都大 5倍角 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 京都大学過去問
(1)$\cos 5θ=f(\cos θ)$ をみたす多項式$f(x)$をもとめよ。

(2)$\cos \displaystyle \frac{π}{10}\cos \displaystyle \frac{3π}{10}\cos \displaystyle \frac{7π}{10}\cos \displaystyle \frac{9π}{10}=\displaystyle \frac{5}{16}$を示せ。
この動画を見る 

【数Ⅱ】三角関数と方程式 2 sinとcosの1次方程式【合成して三角関数の個数を減らす】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\sin2x=\cos x$$(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1$$(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0$$(0\leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x cos x-1=0$$(0\leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x\cos x-1=0$$(0 \leqq x \lt 2\pi)$
この動画を見る 
PAGE TOP