京大らしさ全開の不朽の名作 京都帝国大学1937 大学入試問題#932 - 質問解決D.B.(データベース)

京大らしさ全開の不朽の名作 京都帝国大学1937 大学入試問題#932

問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{dx}{(x^2-1)^2}$を解け.

1937京都帝国大学過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{dx}{(x^2-1)^2}$を解け.

1937京都帝国大学過去問題
投稿日:2024.09.15

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$aを実数とする。関数
$f(x)=-x^2+6x(a-2 \leqq x \leqq a)$
の最大値をg(a)、最小値をh(a)とする。このとき、
$ab$平面において$b=g(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ ア\ \ }$であり、
ab平面において$b=h(a)$のグラフとa軸によって囲まれる部分の面積は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学人間科学部過去問
この動画を見る 

#茨城大学後期2024#定積分_6#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4} \displaystyle \frac{2}{x^2-1} dx$

出典:2024年茨城大学後期
この動画を見る 

#茨城大学2024#区分求積法_5#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n^{3}}\displaystyle \sum_{k=1}^n (n-k)^2$

出典:2024年茨城大学
この動画を見る 

【高校数学】 数Ⅱ-166 不定積分①

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不定積分を求めよう。

①$\int x^2 dx$

②$\int x^3 dx$

③$\int (10x-5) dx$

④$\int (3x^2-4) dx$

⑤$\int (3t^2+6t) dt$

⑥$\int (x-1)(x+2) dx$

⑦$\int (3x+2)^2 dx$

⑧$\int (x-5)^3 dx$
この動画を見る 

【数学Ⅱ/積分】定積分の基本

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定積分を求めよ。
(1)
$\displaystyle \int_{1}^{3} (-4x)dx$

(2)
$\displaystyle \int_{1}^{2} (x^2+3x+2)dx$

(3)
$\displaystyle \int_{-1}^{2} (x^2+3x)dx-\displaystyle \int_{-1}^{2} (x^2-x)dx$
この動画を見る 
PAGE TOP