2021昭和学院秀英 確率 - 質問解決D.B.(データベース)

2021昭和学院秀英 確率

問題文全文(内容文):
2⃣、3⃣、4⃣、5⃣、6⃣
5枚のカードから無作為に1枚取り出し数字を記録して戻す作業を3回繰り返したとき、記録した数字の積が4の倍数となる確率を求めよ。

2021昭和学院秀英高等学校
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2⃣、3⃣、4⃣、5⃣、6⃣
5枚のカードから無作為に1枚取り出し数字を記録して戻す作業を3回繰り返したとき、記録した数字の積が4の倍数となる確率を求めよ。

2021昭和学院秀英高等学校
投稿日:2021.01.19

<関連動画>

equation : Shirotan's cute kawaii math show #数学 #小学生テスト #高校入試 #高校受験

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#大阪星光学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
ax-y=4 (a,b,>0)
x+by=7
解をa,bを用いて表せ
この動画を見る 

三平方の定理を使わずに解くこともできます

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#三平方の定理#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照
この動画を見る 

福田の数学〜東京大学2025文系第4問〜放物線で囲まれた面積の最大値

アイキャッチ画像
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$a$は実数とする。

座標平面において、次の連立不等式の表す領域の

面積を$S(a)$とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
y \leqq -\dfrac{1}{2}x^2+2 \\
y \geqq \vert x^2+a \vert \\\
-1 \leqq x \leqq 1
\end{array}
\right.
\end{eqnarray}$

$a$が$ 2\leqq a \leqq 2$の範囲を動くとき、

$S(a)$の最大値を求めよ。

$2025$年東京大学文系過去問
この動画を見る 

【「思考の過程を説明できるか?】一次関数:東京都立日比谷高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
一次関数$y=ax+4$において
$x$の変域$-3\leqq x\leqq 6$のとき,$y$の変域は$2\leqq y\leqq 5$である.
定数$a$の値を求めよ.

都立日比谷高校過去問
この動画を見る 

高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.

$ \boxed{2}$

図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.

$ \boxed{3}$

図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る 
PAGE TOP