北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?

(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?

出典:北海道大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?

(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?

出典:北海道大学 過去問
投稿日:2019.01.05

<関連動画>

【ゼロからわかる】整式の割り算(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の整式$A,B$について、$A$を$B$で割った商と余りを求めよ。
(1)$A=a^2+6a+5,B=a+3$
(2)$A=4x^3-3x+2,B=2x+3$
この動画を見る 

福田のおもしろ数学580〜100より小さい正の整数を50個選んだとき互いに素な整数が存在する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$100$より小さい互いに異なる正の整数を

$50$個選んだとき、その中に

互いに素な$2$つの整数が必ず

存在することを証明して下さい。
    
この動画を見る 

福田のおもしろ数学562〜連立漸化式で定まる数列に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,

$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$

で定義されている。

$a_{2024}+b_{2024}\geqq 88$

であることを証明して下さい。
    
この動画を見る 

東大 漸化式 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.

(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.

(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.

東大過去問
この動画を見る 

早稲田(政経)対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$

出典:2003年早稲田大学 政治経済学部 過去問
この動画を見る 
PAGE TOP