問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?
(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?
出典:北海道大学 過去問
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?
(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?
出典:北海道大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?
(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?
出典:北海道大学 過去問
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?
(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?
出典:北海道大学 過去問
投稿日:2019.01.05