福田のおもしろ数学120〜n変数の条件付き最大最小問題 - 質問解決D.B.(データベース)

福田のおもしろ数学120〜n変数の条件付き最大最小問題

問題文全文(内容文):
実数$x_1$,$x_2$,...,$x_n$が$x_1^2$+$x_2^2$+...+$x_n^2$=1 を満たすとき、$x_1^2$+$2x_2^2$+...+$nx_n^2$ の最大値と最小値を求めよ。
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
実数$x_1$,$x_2$,...,$x_n$が$x_1^2$+$x_2^2$+...+$x_n^2$=1 を満たすとき、$x_1^2$+$2x_2^2$+...+$nx_n^2$ の最大値と最小値を求めよ。
投稿日:2024.04.23

<関連動画>

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜接線と放物線で囲まれた面積3連発だ〜早稲田大学2023年社会科学部第1問〜接線と放物線で囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 曲線$y$=$ax^2$+$b$上に$x$座標が$p$である点Pをとり、点Pにおける接線を$l$とする。ただし、定数$a$,$b$は$a$>0, $b$>0とする。次の問いに答えよ。
(1)接線$l$の方程式を$a$,$b$,$p$を用いて表せ。
(2)接線$l$と曲線$y$=$ax^2$で囲まれた図形の面積Sを$a$,$b$を用いて表せ。
(3)接線$l$と曲線$y$=$ax^2$+$\frac{b}{2}$で囲まれた図形の面積をS'としたとき、S'をSを用いて表せ。
(4)接線$l$と曲線$y$=$ax^2$+$c$で囲まれた図形の面積をS''とする。S"=$\frac{S}{2}$のとき、$c$を$a$,$b$を用いて表せ。ただし、$b$>$c$とする。
この動画を見る 

16大阪府教員採用試験(数学:高校1番 積分)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#対数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1⃣ $f(x)=\int_1^e |logt-logx|dt (1 \leqq x \leqq e)$
(1)f(x)を求めよ。
(2)f(x)の最大値、最小値を求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系105〜絶対不等式(3)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 絶対不等式(3)
$0 \leqq x \lt \frac{\pi}{2}$であるすべてのxについて
$\sin x\cos x \leqq kk(\sin^2x+3\cos^2x)$
が成り立つような実数kの最小値を求めよ。
この動画を見る 

【数学Ⅲ】平均値の定理・接線法線問題 すぐ理解できて一生忘れない攻略法!

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】平均値の定理・接線法線問題解説動画です
-----------------
$y=\displaystyle \frac{3x}{x+2}$

(1)曲線状の点A(1,1)を通る接線の方程式は?

(2)(0,-1)から$y-log x$に引いた接線の方程式は?

(3)$y=3\sqrt{ x^2 }$の(1,1)上の法線の方程式は?

(4)$f(x)=2x^2-x$において$[0,1]$について、平均値の定理の式を満たすCの値は?
この動画を見る 
PAGE TOP