大学入試数学#460「基本に寄り添って」 横浜国立大学(2000) #定積分 - 質問解決D.B.(データベース)

大学入試数学#460「基本に寄り添って」 横浜国立大学(2000) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^32^{x^2}\ dx$

出典:2000年横浜国立大学 入試問題
チャプター:

00:00 イントロ(問題紹介)
00:12 本編スタート
04:34 作成した解答①
04:45 作成した解答②
04:56 エンディング(楽曲提供:兄いえてぃさん)

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^32^{x^2}\ dx$

出典:2000年横浜国立大学 入試問題
投稿日:2023.02.23

<関連動画>

#富山大学推薦2019#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{x}{x^2+1} dx$

出典:2019年富山大学推薦
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第3問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}

2022東京医科歯科大学理系過去問
この動画を見る 

#山梨大学2013#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-10}^{0} \displaystyle \frac{1}{(x+11)(x+12)}$ $dx$

出典:2013年山梨大学
この動画を見る 

#茨城大学2024#定積分_2#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} x^3(x+2)^2 dx$

出典:2024年茨城大学後期
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 
PAGE TOP