三角関数の基礎問題です!2通りで解説【一橋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

三角関数の基礎問題です!2通りで解説【一橋大学】【数学 入試問題】

問題文全文(内容文):
三角形ABCにおいて、$∠A=60°$のとき、
$\sin B+\sin C$と$\sin B \sin C$の取り得る値の範囲を求めよ.

一橋大過去問
チャプター:

00:04 問題文
00:57 (1)和積の公式を利用
04:14 (2)積和の公式を利用
06:50 (1)の別解 1文字削除
08:04 (2)の別解 1文字削除

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形ABCにおいて、$∠A=60°$のとき、
$\sin B+\sin C$と$\sin B \sin C$の取り得る値の範囲を求めよ.

一橋大過去問
投稿日:2022.10.17

<関連動画>

大学入試問題#148 京都大学(1972) 積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。

出典:1972年京都大学 入試問題
この動画を見る 

大学入試問題#573「沼にはまらないように!!」 京都帝国大学(1937) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x(a^3+x^3)}$

出典:1937年京都帝国大学 入試問題
この動画を見る 

数学「大学入試良問集」【10−5③ 直線の通過領域】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上の2点$P(t,0),Q(0,1)$に対して、$P$を通り、$PQ$に垂直な直線を$l$とする。
$t$が$-1 \leqq t \leqq 1$の範囲を動くとき、$l$が通る領域を求めて、平面上に図示せよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

東京医科大 融合問題(数Ⅲ不要)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n 2^{\displaystyle \frac{k(7-k)}{2}} \leqq M$

どんな自然数$n$に対しても成り立つ整数$M$の最小値を求めよ

出典:東京医科大学 過去問
この動画を見る 
PAGE TOP