素数に関する問題 国学院高校 - 質問解決D.B.(データベース)

素数に関する問題 国学院高校

問題文全文(内容文):
$a^2-b^2$が素数のとき
a-b=?
(a,bはともに自然数で、a>b)

國學院高等学校
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2-b^2$が素数のとき
a-b=?
(a,bはともに自然数で、a>b)

國學院高等学校
投稿日:2022.11.18

<関連動画>

教え子に授業させてみた

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2a^2+(8-b)a-4b=2021$
正の整数a,bの組(a,b)をすべて求めよ。
この動画を見る 

雑問

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 25^{63}\times 63^{25}$の下3桁を求めよ.
この動画を見る 

【高校数学】 数A-65 約数と倍数①

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ある整数が次の数の倍数かどうかを調べる判定法は・・・
$\boxed{3}$→①各位の数の$\quad$が$\quad$の倍数
$\boxed{4}$→②下$\quad$桁が$\quad$の倍数
$\boxed{6}$→2の倍数かつ3の倍数
$\boxed{8}$→③下$\quad$桁が$\quad$の倍数
$\boxed{9}$→④各位の数の$\quad$が$\quad$の倍数

⑤$12564$は,$2,3,4,5,6,8,9$のうち,どの数の倍数であるか答えよう.

⑥$a,b$は整数とする.
$a,b$が7の倍数ならば,$2a+3$は7の倍数であることを証明しよう.
この動画を見る 

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
この動画を見る 

慈恵医大 座標のフリした整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
Oを原点とする座標平面において,第一象限に属する点P$(\sqrt2 r,\sqrt3 s)$(r,sは有理数)をとるとき,線分OPの長さは無理数となることを示せ.

慈恵医大過去問
この動画を見る 
PAGE TOP