方程式を解け - 質問解決D.B.(データベース)

方程式を解け

問題文全文(内容文):
$\frac{x^4 -16}{x^2 + 4} = 0$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^4 -16}{x^2 + 4} = 0$
投稿日:2023.03.25

<関連動画>

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)Pを素数とし、kを0以上の整数とする。$2^{P-1}-1=P^k$を満たす
 P,Kの組をすべて求めよ。
この動画を見る 

頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ
この動画を見る 

あの東大の問題の類題!「あれ」で一発で解けます【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の等式を満たす整数$x,y,z$の組$(x,y,z)$をすべて求めなさい。

$x^6+y^6+z^6=3xyz$
この動画を見る 

福田の数学〜立教大学2022年経済学部第3問〜放物線と円と直線で囲まれた面積

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}Oを原点とする座標平面上の放物線C:y=x^2とC上の点P(\frac{\sqrt3}{2}, \ \frac{3}{4})がある。\hspace{10pt}\\
PにおけるCの接線をlとし、また、Pを通りlと直交する直線をmとする。\hspace{30pt}\\
さらに、mとx軸の交点をQとする。このとき、次の問いに答えよ。\hspace{59pt}\\
(1)mの方程式をy=px+qとするとき、定数p,qの値を求めよ。\hspace{66pt}\\
(2)Qの座標を(a,\ 0)とするとき、aの値を求めよ。\hspace{121pt}\\
(3)Qを中心とする半径rの円Dがlとただ1つの共有点を持つとき、rの値を求めよ。\hspace{4pt}\\
(4)(1)で定めたp,qの値に対して、次の連立不等式の表す領域の面積S_1を求めよ。\hspace{9pt}\\
x \geqq 0,\ \ \ y \geqq 0,\ \ \ y \leqq px+q,\ \ \ y \leqq x^2\hspace{100pt}\\
(5)(2)で定めたaの値と(3)で定めたrの値に対して、次の連立不等式の表す領域\hspace{18pt}\\
の面積S_2を求めよ。\hspace{230pt}\\
0 \leqq x \leqq \frac{\sqrt3}{2},\ \ \ y \geqq 0,\ \ \ y \leqq x^2,\ \ \ (x-a)^2+y^2 \geqq r^2
\end{eqnarray}

2022立教学部経済学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(2)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\triangle ABC$において、辺$BC$の中点を$M$とする。次を証明せよ。
$AB^2+AC^2=2(AM^2+BM^2)$

${\Large\boxed{2}}$ $\triangle ABC$の重心をGとするとき、次を証明せよ。
$AB^2+AC^2=BG^2+CG^2+4AG^2$
(注意)$A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)$のとき$\triangle ABC$の重心の座標は
$\left(\displaystyle \frac{x_1+x_2+x_3}{3},\displaystyle \frac{y_1+y_2+y_3}{3}\right)$
この動画を見る 
PAGE TOP