【まずは完答、それから本質をつかむこと!】図形:慶応義塾高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【まずは完答、それから本質をつかむこと!】図形:慶応義塾高等学校~全国入試問題解法

問題文全文(内容文):
$ \triangle ABC$において,$\angle BAC=36^{ \circ }$
$BC=2$
条件はこれだけ!
※図は動画内参照
単元: #数学(中学生)#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$において,$\angle BAC=36^{ \circ }$
$BC=2$
条件はこれだけ!
※図は動画内参照
投稿日:2022.01.29

<関連動画>

【高校受験対策/数学】難解死守4

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守4

①連立方程式を解け
$\frac{2x-y}{3}=\frac{y}{2}-1$
$(x+1):(y-2)=3:4$

➁$3\sqrt{8}-\frac{\sqrt{3}}{2}-\sqrt{2}+\sqrt{75}$

③$x,y,z$を$0$以上の整数とするとき、$x+2y+3z=20$を満たす整数の組$(x,y,z)$は何組あるか。

④$x^2yz-y^3z+2y^2z^2-yz^3$を因数分解せよ。

⑤大中小3つのさいころを同時に1回投げて、大中小のさいころの出た目の数をそれぞれ$a,b,c$とする。
このとき$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$となる確率を求めよ。

⑥右の図のように、円$o$の周上に5点、$A,B,C,D,E$をとる。
線分$AC$は 円$o$の直径であり、$\stackrel{\huge\frown}{BC}=\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$、$\angle BAC=15°$である。
線分$AC$と$BE$の交点を$F$とするとき、$\angle AFE$の大きさを求めよ。
この動画を見る 

【中学数学】大阪府公立高校一般入試2015年度~1次関数~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#大阪府公立高等学校
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
大阪府公立高校一般入試2015年度
1次関数説明動画です
この動画を見る 

【論点はまだある…!】整数:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#高校入試過去問(数学)#数学(高校生)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$42024を素因数分解せよ$
この動画を見る 

動体視力とYouTubeのAIを確認する数学~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
図の曲線は関数$y=x^2$である.
曲線上に$x$座標が$-3,2$である2点$A$と$B$である.
2点$A,B$を通る直線$l$があり,$l$と$x$軸の交点を$C$とする.
$\triangle AOC$の面積を求めなさい.

埼玉県高校過去問
この動画を見る 

三重高校 面倒な計算はいらない。

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
P,Q,Rはそれぞれの円の中心
円Rの半径=10
RQ=?
*図は動画内参照

三重高等学校
この動画を見る 
PAGE TOP