福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART2) - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第6問〜線分の先端の可動範囲と関節を加えたときの可動範囲(PART2)

問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ Oを原点とする座標空間において、不等式|x|≦1, |y|≦1, |z|≦1の表す立方体を考える。その立方体の表面のうち、z<1を満たす部分をSとする。
以下、座標空間内の2点A,Bが一致するとき、線分ABは点Aを表すものとし、その長さを0と定める。
(1)座標空間内の点Pが次の条件(i),(ii)をともに満たすとき、点Pが動きうる範囲Vの体積を求めよ。
(i)OP≦$\sqrt 3$
(ii)線分OPとSは、共有点をもたないか、点Pのみを共有点にもつ。
(2)座標空間内の点Nと点Pが次の条件(iii),(iv),(v)をすべて満たすとき、点Pが動きうる範囲Wの体積を求めよ。必要ならば、$\sin\alpha$=$\frac{1}{\sqrt 3}$を満たす実数α(0<α<$\frac{\pi}{2}$)を用いてよい。
(iii)ON+NP≦$\sqrt 3$
(iv)線分ONとSは共有点を持たない。
(v)線分NPとSは、共有点を持たないか、点Pのみを共有点を持つ。

2023東京大学理系過去問
投稿日:2023.03.13

<関連動画>

光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る 

大学入試問題#461「どう処理すべきか」 関西大学(2009) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{e^{-2x}}{1+e^{-x}} dx$

出典:2009年関西大学 入試問題
この動画を見る 

大学入試問題#386「よく見かける問題」 #弘前大学(2009) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{(3+x^2)^2}$

出典:2009年弘前大学 入試問題
この動画を見る 

【高校数学】山形大学の積分の問題をその場で解説しながら解いてみた!毎日積分99日目~47都道府県制覇への道~【㊷山形】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【山形大学 2023】
曲線$y=x^4+2x^3-3x^2$を$C$とし、$C$上の点$P(1,0)$における接線を$L$とするとき、次の(i),(ii),(iii)に答えよ。
(i) 接線$L$の方程式を求めよ。
(ii) 曲線$C$と接線$L$の共有点の座標を求めよ。
(iii) 曲線$C$と接線$L$で囲まれた部分の面積を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$(2)曲線$y=\log x$を$C$とする。$t \gt e$として、C上の点$P(t,\ \log t)$におけるCの
接線lとx軸との交点をQ、y軸との交点をRとおく。また、$(0,\ \log t)$で表される
点を$S$とおく。点Qのx座標は$\boxed{\ \ ウ\ \ }$であり、点Rのy座標は$\boxed{\ \ エ\ \ }$である。
座標平面の原点をOとすると、$a \gt 0$のとき、線分ORと線分RSの長さの比が
$a:1$となるのは、$t=\boxed{\ \ オ\ \ }$のときである。したがって、三角形OQRの面積が
三角形SPRの面積の9倍となるのは、$t=\boxed{\ \ カ\ \ }$のときである。
曲線Cとx軸、および直線$x=\boxed{\ \ カ\ \ }$で囲まれた図形をy軸のまわりに一回転
させてできる回転体の体積は$\boxed{\ \ キ\ \ }\pi$となる。

$\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ オ\ \ }$の解答群
$⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)$
$⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)$

$\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }$の解答群
$⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}$
$⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1$

2021明治大学全統過去問
この動画を見る 
PAGE TOP