【高校数学】ユークリッドの互除法をどこよりも丁寧に教えます 5-7【数学A】 - 質問解決D.B.(データベース)

【高校数学】ユークリッドの互除法をどこよりも丁寧に教えます 5-7【数学A】

問題文全文(内容文):
1⃣
667と299の最大公約数を求めよ


2⃣
31$x$+22$y$=1を満たす整数$x,y$の組を1つ求めよ
チャプター:

00:00 はじまり

00:28 解説スタート

01:39 例題(1)

05:05 例題(2)

13:02 まとめ

13:31 まとめノート

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
667と299の最大公約数を求めよ


2⃣
31$x$+22$y$=1を満たす整数$x,y$の組を1つ求めよ
投稿日:2021.03.29

<関連動画>

福田の数学〜早稲田大学2021年商学部第2問〜空間図形の共通部分

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 図(※動画参照)のように、1辺の長さが2である立方体ABCD-EFGHの内側に、\\
正方形ABCDに内接する円を底面にもつ高さ2の円柱Vをとる。次の設問に答えよ。\\
(1)立方体の対角線AGと円柱Vの共通部分と得られる線分の長さを求めよ。\\
\\
(2)Wを三角柱ABC-DCGと三角柱AEH-BFGの共通部分とする。\\
円柱Vの側面とWの共通部分に含まれる線分の長さの最大値を求めよ。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

福田の数学〜反復試行の確率問題の練習に最適な問題〜慶應義塾大学2023年商学部第4問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
太郎は 15 個の球を、花子は幻個の球を持っている。による球のやり取りを 2 人の間で繰り返す。こから始めて、次の手順による球のやり取りを 2 人の間で繰り返す。
【1】 2 個のさいころを同時に投げる。
【 2 】① 2 個とも奇数の目が出たら、太郎が花子に 1 個の球を渡す。
   ② 2 個とも偶数の目が出たら、太郎が花子に 2 個の球を渡す。
   ③奇数の目と偶数の目 1 個ずつ出たら、花子が太郎に 3 個の球を渡す。
この手順【1】,【 2 】によるやり取りを、 7 回繰り返す。その結果、太郎と花子の持つ球の個数について、以下の間いに答えなさい。
( 1 )太郎と花子が同数の球を持っている確率は$\dfrac{\fbox{アイウ}}{\fbox{エオカキ}}$である。
( 2 )持っている球の数が、太郎と花子の 2 人とも最初と変わらない確率は$\dfrac{\fbox{クケコ}}{\fbox{サシスセ}}$である。
( 3 )太郎の持っている球の数が、花子の持っている球の数の半分である確率は$\dfrac{\fbox{ソタチ}}{\fbox{ツテトナ}}$である。

2023慶應義塾大学商学部過去問
この動画を見る 

【高校数学】最大公約数と最小公倍数の例題演習 5-4.5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 和が648で最大公約数が72であるような、ともに3桁の2つの自然数を求めよ。

(2) 最大公約数が28で最小公倍数1260であるような自然数a,bの組をすべて求めよ。
  ただし、a$\lt$bとする。
この動画を見る 

気付けば一瞬!!!!2つのおうぎ形

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
AB=5
斜線部の面積=?

*図は動画内参照
この動画を見る 

千葉大 素数 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
n,Nは自然数
(1)5以上の素数は6n+1の形で表されることを示せ。
(2)6N-1は、6n-1の形で表される素数を約数にもつことを示せ。
(3)6n-1の形で表される素数は無限にあることを示せ。
この動画を見る 
PAGE TOP