大学入試問題#47 横浜国立大学(2020) 複素数 - 質問解決D.B.(データベース)

大学入試問題#47 横浜国立大学(2020) 複素数

問題文全文(内容文):
$\alpha=\cos\displaystyle \frac{2}{7}\pi+i\ \sin\displaystyle \frac{2}{7}\pi$
$\beta=\alpha+\alpha^2+\alpha^4$
$r=\alpha^3+\alpha^5+\alpha^6$

(1)$\beta+r,\ \beta\ r$を求めよ。
(2)$\beta,r$を求めよ。

出典:2020年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\alpha=\cos\displaystyle \frac{2}{7}\pi+i\ \sin\displaystyle \frac{2}{7}\pi$
$\beta=\alpha+\alpha^2+\alpha^4$
$r=\alpha^3+\alpha^5+\alpha^6$

(1)$\beta+r,\ \beta\ r$を求めよ。
(2)$\beta,r$を求めよ。

出典:2020年横浜国立大学 入試問題
投稿日:2021.11.27

<関連動画>

福田の数学〜一橋大学2022年文系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
中身の見えない2つの箱があり、1つの箱には赤玉2つと白玉1つが入っており、
もう1つの箱には赤玉1つと白玉2つが入っている。どちらかの箱を選び、選んだ
箱の中から玉を1つ取り出して元に戻す、という操作を繰り返す。
(1) 1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら前回とは異なる箱を選ぶ。n回目に赤玉
を取り出す確率$p_n$を求めよ。
(2)1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら箱を無作為に選ぶ。n回目に赤玉を取り
出す確率 $q_n$を求めよ。

2022一橋大学文系過去問
この動画を見る 

九州大 三次関数 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ

出典:2018年九州大学 過去問
この動画を見る 

富山県立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$

出典:2009年富山県立大学 過去問
この動画を見る 

神戸大 不等式の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\dfrac{y}{x}+\dfrac{x}{y}\geqq 2$を示せ.等号成立するか?
(2)n個の正実数$a_1・・・・a_n\left(a_1+・・・a_n\right)\left(\dfrac{1}{a_1}+・・・・+\dfrac{1}{a_n}\right)\geqq n^2$
を示せ。等号成立はするか?
この動画を見る 

積分 CASTDICE TV 栗崎 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \int_{0}^{ x } xe^x \sin x$ $dx$

出典:東工大学入試数学 過去問
この動画を見る 
PAGE TOP