素数にならないのはなぜ? 洛星 - 質問解決D.B.(データベース)

素数にならないのはなぜ? 洛星

問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=n^2+n+40$のnにどのような自然数を代入してもNは素数にはならない。
なぜ?

洛星高等学校(改)
投稿日:2022.08.02

<関連動画>

2023高校入試解説29問目 整数問題その1 早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$h(m,n) = \frac{1}{2}(m+n)(m+n-1)-m+1$と定める。(m,nは正の整数)
$h(3m,3m+4) = 1987$を満たすmをすべて求めよ。

2023早稲田大学 本庄高等学院
この動画を見る 

福田の1.5倍速演習〜合格する重要問題074〜立教大学2019年度経済学部第1問(6)〜最大公約数を求める

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)14351と14803の最大公約数は$\boxed{\ \ キ \ \ }$である。

2019立教大学経済学部過去問
この動画を見る 

綺麗な数字の並びの平方数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数であることを示せ.
$\underbrace{277 + \cdots + 7}_{n個}
\underbrace{88 + \cdots + 89}_{ n+1個}$
この動画を見る 

合同式の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+n+1$は$9$の倍数でないことを示せ.
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^{2023}+13^{2023}を144で割った余りを求めよ.$
この動画を見る 
PAGE TOP