一橋大 整数解をもつ三次方程式 - 質問解決D.B.(データベース)

一橋大 整数解をもつ三次方程式

問題文全文(内容文):
$k$は整数である.
$x^3-13x+k=0$は$3$つの異なる整数解をもつ.$k$とこれらの整数解をすべて求めよ.

一橋大過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$は整数である.
$x^3-13x+k=0$は$3$つの異なる整数解をもつ.$k$とこれらの整数解をすべて求めよ.

一橋大過去問
投稿日:2020.12.06

<関連動画>

複素数の7乗の実部の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{7i}}{2})^7$
の実部を求めよ
この動画を見る 

産業医大 2次方程式と3次方程式の共通解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$と$x^2-x+q=0$が1つの共通解をもつ$p,q$の値を求めよ.

1996産業医大過去問
この動画を見る 

4次方程式の解の立方の和

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+2)(x+3)(x+4)=1$の4つの解を$\alpha,\beta,\gamma,\delta$とする.
$\alpha^3+\beta^3+\gamma^3+\delta^3$の値を求めよ.
この動画を見る 

【2次方程式の知識はこれで完ペキ!】複素数と2次方程式の関係を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係
指導講師: 3rd School
問題文全文(内容文):
2次方程式と複素数について解説します。
この動画を見る 

甲南大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#甲南大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{\sqrt{ 3 }+i}{\sqrt{ 3 }-i}$

$Z+Z^2+Z^3+…+Z^{100}$

出典:2002年甲南大学 過去問
この動画を見る 
PAGE TOP