問題文全文(内容文):
$n^3+n^2+n+1$が$60$の倍数となる最小の自然数$n$を求めよ.
$n^3+n^2+n+1$が$60$の倍数となる最小の自然数$n$を求めよ.
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^3+n^2+n+1$が$60$の倍数となる最小の自然数$n$を求めよ.
$n^3+n^2+n+1$が$60$の倍数となる最小の自然数$n$を求めよ.
投稿日:2020.06.24