大学入試問題#880「基本の基本!」 #聖マリアンナ医科大学(2021) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#880「基本の基本!」 #聖マリアンナ医科大学(2021) #整数問題

問題文全文(内容文):
$n,\sqrt{ n^2+2021 }$がともに自然数のとき、$n$の値をすべて求めよ。
$2021=43\times47$を利用してよい

出典:2021年聖マリアンナ医科大学
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n,\sqrt{ n^2+2021 }$がともに自然数のとき、$n$の値をすべて求めよ。
$2021=43\times47$を利用してよい

出典:2021年聖マリアンナ医科大学
投稿日:2024.07.20

<関連動画>

【証明にミスあり。そのうち修正】練習問題23 整数問題 連続する3つの正の整数の積は平方数でない

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
連続する3つの正の整数の横は
平方数でないことを示せ.
この動画を見る 

2021!を5の504乗で割ったあまり

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021!$を$5^{504}$で割った余りを求めよ.
この動画を見る 

高専数学 微積II #11 級数の和

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
級数
$\displaystyle \sum_{n=1}^{\infty}\dfrac{1}{n^2+3n+2}$
の和を求めよ.
この動画を見る 

合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^{(13^{13})}$を$11$で割った余りを求めよ
この動画を見る 

ラ・サール高校の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
\begin{eqnarray}
\left\{
\begin{array}{l}
ad + bc = 2 \\
a + b + c + d = 4
\end{array}
\right.
\end{eqnarray}
を満たす(a,b,c,d)の組はいくつか?

ラ・サール学園
この動画を見る 
PAGE TOP