大学入試問題#851「いやー見た目がきつい」 #自治医科大(2018) - 質問解決D.B.(データベース)

大学入試問題#851「いやー見た目がきつい」 #自治医科大(2018)

問題文全文(内容文):
$x$が$0$以上の実数であるとき、関数$f(x)=\displaystyle \frac{x^4-2x^3-x^2+2x+34}{x^2-x+3}$の最小値を求めよ

出典:2018年自治医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x$が$0$以上の実数であるとき、関数$f(x)=\displaystyle \frac{x^4-2x^3-x^2+2x+34}{x^2-x+3}$の最小値を求めよ

出典:2018年自治医科大学 入試問題
投稿日:2024.06.16

<関連動画>

福田の1.5倍速演習〜合格する重要問題010〜千葉大学2015年度理系数学第6問〜論証と剰余類

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
k,m,nを自然数とする。以下の問いに答えよ。
(1)$2^k$を7で割った余りが4であるとする。このとき、kを3で割った余りは
2であることを示せ。

(2)$4m+5n$が3で割り切れるとする。このとき、$2^{mn}$を7で割った余りは
4ではないことを示せ。

2015千葉大学理系過去問
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

福田の数学〜北海道大学2025文系第2問〜数え上げと余弦定理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$は条件

$2\leqq a \lt b \lt c \leqq 6$を満たすとする。

(1)不等式$a+b\gt c$を満たすような

$(a+b+c)$をすべて挙げよ。

(2)不等式$a^2+b^2\geqq c^2$を満たすような

$(a+b+c)$をすべて挙げよ。

(3) (2)で求めた$(a,b,c)$について、

頂点$A,B,C$と向かい合う辺の長さがそれぞれ

$a,b,c$で与えられる$\triangle ABC$を考える。

このようなすべての$\triangle ABC$について

$\cos \angle ACB$を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

#茨城大学2024#定積分_7#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x(e^{2x}+\frac{1}{e^{2x}}) dx$

出典:2024年茨城大学
この動画を見る 

数学「大学入試良問集」【13−15 格子点の解法】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$k$を$0$以上の整数とするとき、$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2} \leqq k$をみたす$0$以上の整数$x,y$の組$(x,y)$の個数を$a_k$とする。
$a_k$を$k$の式で表せ。

(2)
$n$を$0$以上の整数とするとき
$\displaystyle \frac{x}{3}+\displaystyle \frac{y}{2}+z \leqq n$
をみたす$0$以上の整数$x,y,z$の組$(x,y,z)$の個数を$b_n$とする。
$b_n$を$n$の式で表せ。
この動画を見る 
PAGE TOP