福田の数学〜中央大学2022年経済学部第3問〜下一桁が一致する整数と下二桁が一致する整数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年経済学部第3問〜下一桁が一致する整数と下二桁が一致する整数

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}正の整数xについて、以下の設問に答えよ。\hspace{170pt}\\
なお、ここでxの下一桁とはxを10で割った余りであり、\hspace{120pt}\\
xの下二桁とはxを100で割った余りであるとする。\hspace{140pt}\\
(1)10 \leqq x \leqq 40の範囲で、xn下一桁とx^2の下一桁が一致するようなxの個数を求めよ。\\
(2)10 \leqq x \leqq 99の範囲で、x^2の下一桁とx^4の下一桁が一致するxをすべて足した数を\hspace{14pt}\\
Yとする。整数Yの下一桁を求めよ。\hspace{190pt}\\
(3)10 \leqq x \leqq 99の範囲で、x^2の下二桁がxと等しいものをすべて求めよ。\hspace{57pt}
\end{eqnarray}
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}正の整数xについて、以下の設問に答えよ。\hspace{170pt}\\
なお、ここでxの下一桁とはxを10で割った余りであり、\hspace{120pt}\\
xの下二桁とはxを100で割った余りであるとする。\hspace{140pt}\\
(1)10 \leqq x \leqq 40の範囲で、xn下一桁とx^2の下一桁が一致するようなxの個数を求めよ。\\
(2)10 \leqq x \leqq 99の範囲で、x^2の下一桁とx^4の下一桁が一致するxをすべて足した数を\hspace{14pt}\\
Yとする。整数Yの下一桁を求めよ。\hspace{190pt}\\
(3)10 \leqq x \leqq 99の範囲で、x^2の下二桁がxと等しいものをすべて求めよ。\hspace{57pt}
\end{eqnarray}
投稿日:2022.11.10

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 7^{n+1}が19で割り切れるならnは平方数でないことを示せ. $
この動画を見る 

数学オリンピック日本予選 合同式の基本

単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1111²⁰¹⁸を11111で割ったあまりを求めよ
この動画を見る 

京大 信州大 整数 2次方程式 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
①$n$と$n^2+2$がともに素数となるような自然数$n$を求めよ。

信州大学過去問題
②$x^2+(2a-1)x+a^2-3a-4=0$が少なくとも1つの正の解をもつ条件。
この動画を見る 

階乗の虫食い算

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 15!=13076abc68000,これを解け.$
この動画を見る 

【ゆう☆たろうがていねいに解説】整数の性質 4STEP数A 258,259 最小公倍数、最大公約数の基本②

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質
指導講師: 理数個別チャンネル
問題文全文(内容文):
みかんが435個,りんごが268個ある。何人かの子どもに,みかんもりんごも平等に,できるだけ多く配ったところ,みかんは45個,りんごは34個余った。子どもの人数を求めよ。

(1)nは自然数で,n/20,n/42がともに自然数となるという。このようなnのうちで最も小さいものを求めよ。

(2)42/5, 21/10, 35/16,のいずれに掛けても積が自然数となる分数のうち,最も小さいものを求めよ。
この動画を見る 
PAGE TOP