2個のサイコロだけど難問!! 日大三 (西東京) - 質問解決D.B.(データベース)

2個のサイコロだけど難問!! 日大三 (西東京)

問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
投稿日:2023.08.09

<関連動画>

大阪大 確率 3次式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3回投げて出た目を順に$l,m,n$として$f(x)=x^3+lx^2+mx+n$について

(1)
$f(x)$が$(x+1)^2$で割り切れる確率は?

(2)
$f(x)$が極大値・極小値もとる確率は?

出典:2012年大阪大学 過去問
この動画を見る 

答えは0通り⁉️

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
100円玉、50円玉、10円玉で3000面を支払うのは何通りか?

産業医科大過去問
この動画を見る 

【数A】高2生必見!! 2019年8月 第2回 K塾高2模試 大問4_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロ を1回投げるごとに次の(規則)に従ってPを動かす。 (規則) ・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。 ・3の目が出たときはx軸の正の方向に2だけ動かす。 ・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。 例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy 座標が2である条件付き確率を求めよ。
この動画を見る 

【数学A】確率③ これで最後の動画です(多分)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学A】確率問題の解き方説明動画です
-----------------
動画内の図を参照し、以下の問に答えよ
Aから3個 Bから2個 同時に出す。
黒玉が3個の確率は?
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第3問〜複雑な反復試行と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
最初に袋の中に白玉が1個入っている。次の規則に従って、1回の操作につき
白玉または赤玉を1個ずつ加えていく。
・1回目の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個加
え、裏が出たときには白玉を袋の中に1個加える。
・2回目以降の操作では、コインを投げ、表が出たときには赤玉を袋の中に1個
加え、裏が出たときには袋から玉を1個無作為に取り出し、その色を見てから
袋に戻し、さらに同じ色の玉を袋の中に1個加える。
(1) 2回目の操作を終えたとき、袋の中に白玉がちょうど2個入っている確率は
$\boxed{\ \ サ\ \ }$である。
(2) 3回目の操作を終えたとき、コインの表が2回、裏が1回出ていたという条件
の下で、袋の中に白玉がちょうど2個入っている条件つき確率は$\boxed{\ \ シ\ \ }$である。
以下、kは2以上の整数とし、k回目の操作を終えたときを考える。
(3)袋の中に白玉のみが入っている確率は$\boxed{\ \ ス\ \ }$である。
(4)1回目の操作で赤玉を加えたという条件の下で、袋の中に白玉がちょうどk個
入っている条件つき確率は$\boxed{\ \ セ\ \ }$である。
(5)袋の中に白玉がちょうどk個入っている確率は$\boxed{\ \ ソ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP